Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Dictionnaire thématiqueUn dictionnaire thématique est un dictionnaire dont les entrées ne respectent pas strictement sur l'ordre alphabétique, mais sont classées par thèmes. Le dictionnaire des synonymes, les dictionnaires médicaux ou scientifiques ou les thésaurus lexicographiques sont des exemples de dictionnaires thématiques. Depuis le , les dictionnaires et les autres ouvrages du même genre présentent les mots par ordre alphabétique. Bien que ce classement facilite la rapidité d'accès aux mots, il ne tient pas compte de leur sens et éloigne les uns des autres des mots apparentés par le sens.
Sélection négative (sélection naturelle)Dans la sélection naturelle, la sélection négative ou la sélection purifiante est l'élimination sélective des allèles délétères. Cela peut stabiliser la sélection par la purge des polymorphismes génétiques délétères qui résultent de mutations aléatoires. La purge des allèles délétères peut être réalisée au niveau de la génétique des populations, ne nécessitant pas plus d'une seule mutation ponctuelle comme l'unité de sélection.
Mémoire temporelle et hiérarchiqueLa mémoire temporelle et hiérarchique (en anglais Hierarchical temporal memory (HTM)) est un modèle d'apprentissage automatique développé par Jeff Hawkins et Dileep George de la compagnie Numenta. Il modélise certaines propriétés structurelles et algorithmiques du néocortex. C'est un modèle biomimétique fondé sur le paradigme mémoire-prédiction, une théorie du fonctionnement du cerveau élaborée par Jeff Hawkins dans son livre On Intelligence.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Matching pursuitMatching pursuit (MP) is a sparse approximation algorithm which finds the "best matching" projections of multidimensional data onto the span of an over-complete (i.e., redundant) dictionary . The basic idea is to approximately represent a signal from Hilbert space as a weighted sum of finitely many functions (called atoms) taken from . An approximation with atoms has the form where is the th column of the matrix and is the scalar weighting factor (amplitude) for the atom . Normally, not every atom in will be used in this sum.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Auto-encodeurUn auto-encodeur (autoencodeur), ou auto-associateur est un réseau de neurones artificiels utilisé pour l'apprentissage non supervisé de caractéristiques discriminantes. L'objectif d'un auto-encodeur est d'apprendre une représentation (encodage) d'un ensemble de données, généralement dans le but de réduire la dimension de cet ensemble. Récemment, le concept d'auto-encodeur est devenu plus largement utilisé pour l'apprentissage de modèles génératifs.
Biologie de synthèseLa biologie de synthèse, ou biologie synthétique, est un domaine scientifique et biotechnologique émergeant qui combine biologie et principes d'ingénierie, dans le but de concevoir et construire (« synthétiser ») de nouveaux systèmes et fonctions biologiques, avec des applications notamment développées par les secteurs agropharmaceutique, chimique, agricole et énergétique. Les objectifs de la biologie de synthèse sont de deux types : Tester et améliorer notre compréhension des principes gouvernant la biologie (apprendre en construisant).