Énergie d'ionisationthumb|right|600px|Graphique des premières énergies d'ionisation en eV, en fonction du numéro atomique. L'énergie d'ionisation augmente graduellement des métaux alcalins jusqu'aux gaz nobles. Et dans une colonne donnée du tableau périodique, l'énergie d'ionisation diminue du premier rang jusqu'au dernier, à cause de la distance croissante du noyau jusqu'à la couche des électrons de valence.
Spectrométrie d'absorptionLa spectrométrie d'absorption est une méthode de spectroscopie électromagnétique utilisée pour déterminer la concentration et la structure d'une substance en mesurant l'intensité du rayonnement électromagnétique qu'elle absorbe à des longueurs d'onde différentes. La spectroscopie d'absorption peut être atomique ou moléculaire. Comme indiqué dans le tableau précédent, les rayonnements électromagnétiques exploités en spectroscopie d'absorption moléculaire vont de l'ultraviolet jusqu'aux ondes radio : La couleur d'un corps en transmission (transparence) représente sa capacité à absorber certaines longueurs d'onde.
Hélium 3L’hélium 3, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 3 : son noyau atomique compte deux protons et un seul neutron, avec un spin 1/2+ pour une masse atomique de . Cet isotope stable — non radioactif — est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Recherché pour ses applications potentielles en fusion nucléaire, est rare sur Terre, où il constitue environ de l'hélium du manteau ; dans l'atmosphère terrestre, on compte d'hélium, dont représente seulement , soit une fraction d'à peine 7,2 de l'atmosphère dans son ensemble.
Spectroscopie de fluorescenceLa spectroscopie de fluorescence, ou encore fluorimétrie ou spectrofluorimétrie, est un type de spectroscopie électromagnétique qui analyse la fluorescence d'un échantillon. Elle implique l'utilisation d'un rayon de lumière (habituellement dans l'ultraviolet) qui va exciter les électrons des molécules de certains composés et les fait émettre de la lumière de plus basse énergie, typiquement de la lumière visible, mais pas nécessairement. La spectroscopie de fluorescence peut être une spectroscopie atomique ou une spectroscopie moléculaire.
Flash de l'héliumLe flash de l'hélium est un phénomène extrêmement puissant et bref survenant typiquement au sein d'étoiles de masse comprise entre 0,5 et parvenues au sommet de la branche des géantes rouges dans le diagramme de Hertzsprung-Russell et dont le cœur, constitué d'hélium à l'état dégénéré, atteint la température critique d'environ cent millions de degrés () permettant l'amorçage de la fusion de l'hélium en par réaction triple alpha.
Hélium 4L’hélium 4, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 4 : son noyau atomique compte deux protons et deux neutrons pour une masse atomique de et un spin 0+. Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Son rayon de charge a pu être estimé expérimentalement à . En physique nucléaire, le noyau d' est souvent appelé particule α. Sur Terre, l'hélium 4 provient de la radioactivité α des éléments lourds présents dans la planète depuis sa formation.
Resonance Raman spectroscopyResonance Raman spectroscopy (RR spectroscopy or RRS) is a variant of Raman spectroscopy in which the incident photon energy is close in energy to an electronic transition of a compound or material under examination. This similarity in energy (resonance) leads to greatly increased intensity of the Raman scattering of certain vibrational modes, compared to ordinary Raman spectroscopy. Resonance Raman spectroscopy has much greater sensitivity than non-resonance Raman spectroscopy, allowing for the analysis of compounds with inherently weak Raman scattering intensities, or at very low concentrations.
Linéaire sans seuilLe modèle linéaire sans seuil (LSS, ou LNT en anglais) est un modèle utilisé en radioprotection pour fixer la limite réglementaire des expositions admissibles. Le modèle se fonde sur le principe que toutes les doses reçues sont équivalentes, indépendamment du débit de dose ou de leur fractionnement. De ce fait, les doses successives reçues dans une année ou au cours d'une vie peuvent être additionnées. Ce modèle conduit naturellement au principe ALARA (As Low As Reasonably Achievable, aussi faible que raisonnablement atteignable), minimisant les doses reçues par un individu.
Spectroscopie dans l'infrarouge procheLa spectroscopie dans l'infrarouge proche (ou dans le proche infrarouge, SPIR), souvent désignée par son sigle anglais NIRS (near-infrared spectroscopy), est une technique de mesure et d'analyse des spectres de réflexion dans la gamme de longueurs d'onde (l'infrarouge proche). Cette technique est largement utilisée dans les domaines de la chimie (polymères, pétrochimie, industrie pharmaceutique), de l’alimentation, de l’agriculture ainsi qu'en planétologie. À ces longueurs d’onde, les liaisons chimiques qui peuvent être analysées sont C-H, O-H et N-H.
Interaction fortethumb|250px|alt=Représentation des quarks dans un proton : deux quarks Up et un quark Down, chacun d'un couleur différente, liés par l'interaction forte.|L'interaction forte lie les quarks dans les nucléons, ici dans un proton. L'interaction forte, ou force forte, appelée parfois force de couleur, ou interaction nucléaire forte, est l'une des trois interactions entre particules élémentaires de la matière dans le modèle standard aux côtés de l'interaction électromagnétique et de l'interaction faible.