Plasticité synaptiqueLa plasticité synaptique, en neurosciences, désigne la capacité des synapses à moduler, à la suite d'un événement particulier - une augmentation ou une diminution ponctuelle et significative de leur activité - l'efficacité de la transmission du signal électrique d'un neurone à l'autre et à conserver, à plus ou moins long terme, une "trace" de cette modulation. De manière schématique, l'efficacité de la transmission synaptique, voire la synapse elle-même, est maintenue et modulée par l'usage qui en est fait.
Potentialisation à long termevignette|300x300px|La potentialisation à Long terme (PLT) est une augmentation persistante de la force synaptique après stimulation à haute fréquence d'une synapse chimique. Des études de la PLT sont souvent réalisées dans des parties de l'hippocampe, un organe important pour l'apprentissage et la mémoire. Dans ces études, les enregistrements électriques sont obtenus à partir de cellules et tracés dans un graphique comme celui-ci. Ce graphique compare la réponse à des stimuli au niveau des synapses qui ont subi PLT contre les synapses qui n'ont pas subi la PLT.
Dépression synaptique à long termeLa dépression à long terme (DLT) est « une réduction durable de l'efficacité de la transmission synaptique qui fait suite à certains types de stimulation ». Dans la dépression à long terme l'efficacité synaptique se trouve réduite. Cela est dû au fait que les éléments pré-synaptiques et post-synaptiques des neurones ont une décharge nerveuse asynchrone ou ne déchargent plus d'influx nerveux. La puissance de l'influx nerveux est influencée par la participation des récepteurs NDMA, et de leur influx calcique (Ca2+).
Récepteur AMPALes récepteurs AMPA sont des récepteurs ionotropes activés par le glutamate. Ils sont perméables aux ions Na+ et K+. Ils sont spécifiquement activés par le -amino-3-hydroxy-5-méthylisoxazol-4-propionate (AMPA). Leurs activations ne nécessitent pas la présence d'un coagoniste. On les rencontre principalement dans la densité postsynaptique des synapses glutamatergiques, les plus abondantes du système nerveux central.
Glutamate receptorGlutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate (the conjugate base of glutamic acid) is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter.
Facteur neurotrophique dérivé du cerveauLe facteur neurotrophique issu du cerveau, Brain-Derived Neurotrophic Factor, aussi connu sous le nom de BDNF, est une protéine qui chez les humains est codée par le gène BDNF. Le BDNF est un membre de la famille des neurotrophines qui sont des facteurs de croissance proches du Nerve Growth Factor (NGF). On trouve les facteurs neurotrophiques dans le cerveau et le système nerveux périphérique. Le BDNF agit sur certains neurones du système nerveux central et du système nerveux périphérique.
Protéine d'adhésion cellulaireLes protéines d'adhésion cellulaire (ou CAM, acronyme de l'anglais cell adhesion molecule, signifiant « molécule d'adhésion cellulaire ») sont des protéines intervenant dans les mécanismes de liaison cellulaire. Elles font partie de la superfamille des immunoglobulines. Elles possèdent un domaine cytosolique (intracellulaire), un domaine transmembranaire et un domaine extracellulaire constitué de domaine C2 (constant) répétitifs reliés entre eux par des ponts disulfures.
Hippocampe (cerveau)thumb|Situation de l'hippocampe en profondeur dans le cerveau humain280px|thumb|Hippocampe en vue 3D. L'hippocampe est une structure du télencéphale des mammifères. Il appartient notamment au système limbique et joue un rôle central dans la mémoire et la navigation spatiale. Chez l'Homme et les autres primates, il se situe dans le lobe temporal médian, sous la surface du cortex, au-dessus de la cinquième circonvolution (replis du cortex) temporale T.
Chemical synapseChemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
NeurotransmissionNeurotransmission (Latin: transmissio "passage, crossing" from transmittere "send, let through") is the process by which signaling molecules called neurotransmitters are released by the axon terminal of a neuron (the presynaptic neuron), and bind to and react with the receptors on the dendrites of another neuron (the postsynaptic neuron) a short distance away. A similar process occurs in retrograde neurotransmission, where the dendrites of the postsynaptic neuron release retrograde neurotransmitters (e.g.