Ag-ZrN films were deposited on polyester by direct current pulsed magnetron sputtering (from now on DCMSP) in Ar + N-2 atmosphere. ZrN on the polyester surface interacts with Ag leading to Ag-ZrN films. These composite films were more active in Escherichia coli inactivation compared to the Ag-films by themselves. The E. coli inactivation kinetics on Ag-ZrN polyester surfaces was accelerated >4 times compared to samples sputtering only Ag. Sputtering Zr in N-2 atmosphere presented no antibacterial activity by itself when applied for short times (< one min). The Ag-ZrN polyester sample sputtered for 20s at 300 mA led to the fastest antibacterial E. coli inactivation kinetics within 11/2 h. This sample consisted of Ag-particles with sizes of 15-40 nm, within a layer thickness of 30-45 nm covering similar to 60-70% of the polyester fiber in the direction of the Ag-o/Ag-ion-flux from the Ag-target. An Ag sputtering time of 20s lead to the optimal ratio of Ag-loading/Ag cluster size with the highest amount of Ag-sites held in exposed positions on the polyester surface. The Ag-nanoparticles sputtered for times >20s agglomerated to bigger units leading to longer bacterial inactivation times. The Ag-atoms are shown to be immiscible with the ZrN-layer. The increase in thickness of the Ag-ZrN at longer sputtering times lead to a concomitant increase in rugosity and hydrophobic character of the Ag-ZrN sputtered layers. Several up-to date techniques have been used to characterize the catalytic Ag-ZrN film providing a full description of its structure. The Ag-ZrN films showed a uniform metal distribution and a semi-transparent gray-brown color. (C) 2011 Elsevier B.V. All rights reserved.
Raffaella Buonsanti, Anna Loiudice, Krishna Kumar, Petru Pasquale Albertini, Coline Marie Agathe Boulanger, Jari Leemans, Ona Segura Lecina, Mark Adrian Newton, Philippe Benjamin Green
Anders Meibom, Stéphane Laurent Escrig, Lukas Baumgartner, Florence Bégué