Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider the focusing -critical half-wave equation in one space dimension where denotes the first-order fractional derivative. Standard arguments show that there is a critical threshold such that all solutions with extend globally in time, while solutions with may develop singularities in finite time. In this paper, we first prove the existence of a family of traveling waves with subcritical arbitrarily small mass. We then give a second example of nondispersive dynamics and show the existence of finite-time blowup solutions with minimal mass . More precisely, we construct a family of minimal mass blowup solutions that are parametrized by the energy and the linear momentum . In particular, our main result (and its proof) can be seen as a model scenario of minimal mass blowup for -critical nonlinear PDE with nonlocal dispersion.
Fabrizio Carbone, Giovanni Maria Vanacore, Ivan Madan, Ido Kaminer, Simone Gargiulo, Ebrahim Karimi