Numerical methods for stochastic partial differential equations with multiple scales
Publications associées (159)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Many applied problems, like transport processes in porous media or ferromagnetism in composite materials, can be modeled by partial differential equations (PDEs) with heterogeneous coefficients that rapidly vary at small scales. To capture the effective be ...
This paper presents a new method for the solution of multiscale stochastic differential equations at the diffusive time scale. In contrast to averaging-based methods, e.g., the heterogeneous multiscale method (HMM) or the equation-free method, which rely o ...
Isogeometric Analysis (IGA) is a computational methodology for the numerical approximation of Partial Differential Equations (PDEs). IGA is based on the isogeometric concept, for which the same basis functions, usually Non-Uniform Rational B-Splines (NURBS ...
This paper presents an extension of the spatio-spectral ("3D") image reconstruction algorithm called PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm is able to solve large scale problems and relies on an iterative pro ...
Numerical methods for partial differential equations with multiple scales that combine numerical homogenization methods with reduced order modeling techniques are discussed. These numerical methods can be applied to a variety of problems including multisca ...
Finite elements methods (FEMs) with numerical integration play a central role in numerical homogenization methods for partial differential equations with multiple scales, as the effective data in a homogenization problem can only be recovered from a micros ...
In focusing Kerr media, small- scale filamentation is the major obstacle to imaging at high light intensities. In this article, we experimentally and numerically demonstrate a method based on statistical averaging to reduce the detrimental effects of filam ...
A fully discrete analysis of the finite element heterogeneous multiscale method (FE-HMM) for elliptic problems with N+1 well-separated scales is discussed. The FE-HMM is a numerical homogenization method that relies on a macroscopic scheme (macro FEM) for ...
Finite deformations of planar slender beams for which shear strain can be neglected are described by the extensible-elastica model, where the strain-displacement relation is geometrically exact and the Biot stress–strain relation is linear. However, if the ...
We present a theoretical analysis of the CORSING (COmpRessed SolvING) method for the numerical approximation of partial differential equations based on compressed sensing. In particular, we show that the best s-term approximation of the weak solution of a ...