On the optimal polynomial approximation of stochastic PDEs by Galerkin and Collocation methods
Publications associées (44)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2-gradient ow. We analy ...
In this work we study, from the numerical point of view, a problem involving one-dimensional thermoelastic mixtures with two different temperatures; that is, when each component of the mixture has its own temperature. The mechanical problem consists of two ...
We review spectral methods for the solution of hyperbolic problems. To keep the discussion concise, we focus on Fourier spectral methods and address key issues of accuracy, stability, and convergence of the numerical approximations. Polynomial methods are ...
We propose a novel approach for smoothing on surfaces. More precisely, we aim at estimating functions lying on a surface, starting from noisy and discrete measurements. The surface is represented by NURBS, which are geometrical representations commonly use ...
In this work we propose a new, general and computationally cheap way to tackle parametrized PDEs defined on domains with variable shape when relying on the reduced basis method. We easily describe a domain by boundary parametrizations, and obtain domain de ...
The fractional Laplacian operator (−∆)s on a bounded domain Ω can be realized as a Dirichlet-to-Neumann map for a degenerate elliptic equation posed in the semi-infinite cylinder Ω × (0,∞). In fact, the Neumann trace on Ω involves a Muckenhoupt weight that ...
We consider the numerical approximation of geometric Partial Differential Equations (PDEs) defined on surfaces in the 3D space. In particular, we focus on the geometric PDEs deriving from the minimization of an energy functional by L2L2-gradient flow. We a ...
In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” ...
We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical represe ...
The objective of this thesis is to develop efficient numerical schemes to successfully tackle problems arising from the study of groundwater flows in a porous saturated medium; we deal therefore with partial differential equations(PDE) having random coeffi ...