**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# MATHICSE Technical Report : IGS: an IsoGeometric approach for Smoothing on surfaces

Rapport ou document de travail

Résumé

We propose an Isogeometric approach for smoothing on surfaces, namely estimating a function starting from noisy and discrete measurements. More precisely, we aim at estimating functions lying on a surface represented by NURBS, which are geometrical representations commonly used in industrial applications. The estimation is based on the minimization of a penalized least-square functional. The latter is equivalent to solve a 4th-order Partial Differential Equation (PDE). In this context, we use Isogeometric Analysis (IGA) for the numerical approximation of such surface PDE, leading to an IsoGeometric Smoothing (IGS) method for fitting data spatially distributed on a surface. Indeed, IGA facilitates encapsulating the exact geometrical representation of the surface in the analysis and also allows the use of at least globally C1−continuous NURBS basis functions for which the 4th-order PDE can be solved using the standard Galerkin method. We show the performance of the proposed IGS method by means of numerical simulations and we apply it to the estimation of the pressure coefficient, and associated aerodynamic force on a winglet of the SOAR space shuttle.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (10)

Analyse numérique

L’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des

Équation aux dérivées partielles

En mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle do

Direct numerical simulation

A direct numerical simulation (DNS) is a simulation in computational fluid dynamics (CFD) in which the Navier–Stokes equations are numerically solved without any turbulence model. This means that the

Publications associées (24)

Chargement

Chargement

Chargement

Pierre Wilhelm, Matthieu Wilhelm

We propose a novel approach for smoothing on surfaces. More precisely, we aim at estimating functions lying on a surface, starting from noisy and discrete measurements. The surface is represented by NURBS, which are geometrical representations commonly used in industrial applications. The estimation is based on the minimization of a penalized least-square functional. The latter is equivalent to solve a 4th-order Partial Differential Equation (PDE). In this context, we use Isogeometric Analysis (IGA) for the numerical approximation of such surface PDE, leading to an IsoGeometric Smoothing (IGS) method for fitting data spatially distributed on a surface. Indeed, IGA facilitates encapsulating the exact geometrical representation of the surface in the analysis and also allows the use of at least globally C1−C1− continuous NURBS basis functions for which the 4th-order PDE can be solved using the standard Galerkin method. We show the performance of the proposed IGS method by means of numerical simulations and we apply it to the estimation of the pressure coefficient, and associated aerodynamic force on a winglet of the SOAR space shuttle.

Mathematical and numerical aspects of free surface flows are investigated. On one hand, the mathematical analysis of some free surface flows is considered. A model problem in one space dimension is first investigated. The Burgers equation with diffusion has to be solved on a space interval with one free extremity. This extremity is unknown and moves in time. An ordinary differential equation for the position of the free extremity of the interval is added in order to close the mathematical problem. Local existence in time and uniqueness results are proved for the problem with given domain, then for the free surface problem. A priori and a posteriori error estimates are obtained for the semi-discretization in space. The stability and the convergence of an Eulerian time splitting scheme are investigated. The same methodology is then used to study free surface flows in two space dimensions. The incompressible unsteady Navier-Stokes equations with Neumann boundary conditions on the whole boundary are considered. The whole boundary is assumed to be the free surface. An additional equation is used to describe the moving domain. Local existence in time and uniqueness results are obtained. On the other hand, a model for free surface flows in two and three space dimensions is investigated. The liquid is assumed to be surrounded by a compressible gas. The incompressible unsteady Navier-Stokes equations are assumed to hold in the liquid region. A volume-of-fluid method is used to describe the motion of the liquid domain. The velocity in the gas is disregarded and the pressure is computed by the ideal gas law in each gas bubble trapped by the liquid. A numbering algorithm is presented to recognize the bubbles of gas. Gas pressure is applied as a normal force on the liquid-gas interface. Surface tension effects are also taken into account for the simulation of bubbles or droplets flows. A method for the computation of the curvature is presented. Convergence and accuracy of the approximation of the curvature are discussed. A time splitting scheme is used to decouple the various physical phenomena. Numerical simulations are made in the frame of mould filling to show that the influence of gas on the free surface cannot be neglected. Curvature-driven flows are also considered.

,

Stabilized Runge???Kutta methods are especially efficient for the numerical solution of large systems of stiff nonlinear differential equations because they are fully explicit. For semi-discrete parabolic problems, for instance, stabilized Runge???Kutta methods overcome the stringent stability condition of standard methods without sacrificing explicitness. However, when stiffness is only induced by a few components, as in the presence of spatially local mesh refinement, their efficiency deteriorates. To remove the crippling effect of a few severely stiff components on the entire system of differential equations, we derive a modified equation, whose stiffness solely depends on the remaining mildly stiff components. By applying stabilized Runge???Kutta methods to this modified equation, we then devise an explicit multirate Runge???Kutta??? Chebyshev (mRKC) method whose stability conditions are independent of a few severely stiff components. Stability of the mRKC method is proved for a model problem, whereas its efficiency and usefulness are demonstrated through a series of numerical experiments.