Deep image priorDeep image prior is a type of convolutional neural network used to enhance a given image with no prior training data other than the image itself. A neural network is randomly initialized and used as prior to solve inverse problems such as noise reduction, super-resolution, and inpainting. Image statistics are captured by the structure of a convolutional image generator rather than by any previously learned capabilities.
Travail d'une forceLe travail d'une force est l'énergie fournie par cette force lorsque son point d'application se déplace (l'objet subissant la force se déplace ou se déforme). Il est responsable de la variation de l'énergie cinétique du système qui subit cette force. Si par exemple on pousse une bicyclette, le travail de la poussée est l'énergie produite par cette poussée. Cette notion avec ce nom fut introduite par Gaspard-Gustave Coriolis. Le travail est exprimé en joules (J) dans le Système international.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
Constant of motionIn mechanics, a constant of motion is a quantity that is conserved throughout the motion, imposing in effect a constraint on the motion. However, it is a mathematical constraint, the natural consequence of the equations of motion, rather than a physical constraint (which would require extra constraint forces). Common examples include energy, linear momentum, angular momentum and the Laplace–Runge–Lenz vector (for inverse-square force laws). Constants of motion are useful because they allow properties of the motion to be derived without solving the equations of motion.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.