Publication

Experimental Investigation of the Aeroelastic Stability of an Annular Compressor Cascade at Reverse Flow Conditions

Virginie Anne Chenaux
2012
Thèse EPFL
Résumé

Compressor surge events are unsafe operating regimes yielding highly unsteady flow fields in which complex aeroelastic phenomena occur. If the blade flutter and forced response behaviour (i.e. aeroelastic stability) can be predicted reliably for normal flow conditions, its assessment at severe-off design conditions remains a critical task for compressor development programs. During the flow reversal sequence of a surge cycle, combined aerodynamic phenomena occur which make the accurate prediction of the unsteady forces acting on the blades difficult to assess. The main objective of this investigation is to increase the physical understanding of the unsteady phenomena present during the reverse flow sequence of a typical deep surge cycle. The analysis of the blade surface unsteady pressure distribution enables the identification of the main physical mechanisms present during such extreme flow operating conditions, as well as the evaluation of their contribution on the blade global aerodynamic stability. The approach adopted consists in performing aeroelastic investigations on an annular compressor cascade at established reverse flow conditions. The investigations are carried out at EPFL, in the annular test facility for non-rotating cascades. The cascade is forced to vibrate in a torsional travelling wave mode (controlled vibration). With an upstream swirled flow corresponding to real axial turbomachine conditions, a constant flow can be set in the test section. The steady-state operating conditions are measured upstream and downstream of the test section, using 5-hole aerodynamic probes. Several cascade blades are equipped with pressure taps at 50% span in order to acquire the steady-state and unsteady blade surface pressure distributions. Static pressure taps are also inserted in the casing wall of the test section to assess the steady-state flow field characteristics in the blade tip area. The inlet flow operating conditions are varied in order to determine their influence on the blade unsteady aerodynamic forces. This study presents the measurement results and analyses in details the aerodynamic response of a cascade subjected to controlled vibrations at reverse flow conditions. The data analysis is oriented towards both physical and practical approaches. In particular, the following features are addressed: Identification of the main unsteady physical mechanisms influencing the unsteady aerodynamic forces acting on a blade oscillating and subjected to reverse flow conditions. Determination of the influence of the inlet flow condition variations on these unsteady mechanisms. Evaluation of the contribution of each unsteady phenomenon to the blade aerodynamic stability (in terms of stabilizing or destabilizing impact). Assessment of the key parameters to control in order to minimize flutter risks in case that reverse flow conditions should occur. The data analysis reveals that during the reverse flow sequence of the surge cycle, blade interaction mechanisms play a major role in the blade aerodynamic stability. The global aerodynamic damping coefficient highlights this feature and indicates that aerodynamic instability exists for some operating conditions. A second unsteady phenomenon was detected, generated by the uncommon steady-state flow field characteristics present at reverse flow operating conditions. Within this frame, the presence of a large recirculation zone on the blade suction side was identified, influencing the blade aerodynamic stability. From a more general point of view, this study constitutes a step forward to the understanding of the blade loading processes occurring during a typical deep surge sequence. Results highlight the impact of the steady-state and unsteady phenomena on the blade loading level at reverse flow conditions. For one test case, the measured data was compared with numerical results, performed in parallel to the measurements. The results indicate that even though the agreement is reasonable, the correct prediction of the aerodynamic damping curve re- quires the consideration of a complex blade interaction mechanism. Within this frame, since not many experiments exist at reverse flow conditions, these experimental results are also a precious data source for CFD validation. They enable the improvement of the prediction/simulation accuracy of the compressor performance at off-design flow conditions.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (41)
Compresseur axial
Le compresseur axial est un type de compresseur mécanique dont le flux gazeux, de plus en plus comprimé, suit l'axe de rotation, et dont le fluide de sortie a un mouvement axial. Le compresseur axial génère un flux continu de gaz comprimé . Il est nécessaire d'avoir plusieurs étages de d'aubes pour obtenir des pressions élevées et des taux de compression équivalents à ceux d'un compresseur centrifuge. Un compresseur axial est composé d'éléments en rotation et d'éléments statiques: l'arbre central, guidé par des paliers et une butée, est composé d'anneaux composés eux-mêmes d'aubes rotoriques et statoriques.
Compresseur centrifuge
Le terme « compresseur centrifuge » (aussi appelé « compresseur radial ») désigne un type de turbomachines à circulation radiale et à absorption de travail qui comprend des ventilateurs (soufflantes et extracteurs), et des compresseurs. Les pompes centrifuges, qui sont aussi des turbomachines, désignent des machines faisant circuler des liquides, fluides quasi-incompressibles, et ne sont donc pas des compresseurs (qui eux compriment des gaz compressibles avec changement de volume du gaz).
Conception de turbine éolienne
La conception de turbines éoliennes est le processus de définition de la forme et des spécifications d'une éolienne afin d'extraire efficacement l'énergie du vent. Une installation d'éolienne intègre les équipements nécessaires pour capturer l'énergie du vent, orienter la turbine dans le vent, transformer la rotation mécanique en énergie électrique et d'autres systèmes pour démarrer, arrêter et contrôler la turbine. Cet article couvre la conception des turbines éoliennes à axe horizontal (HAWT) puisque la majorité des turbines commerciales utilisent cette conception.
Afficher plus
Publications associées (57)

Data from: Optimal blade pitch control for enhanced vertical-axis wind turbine performance

Karen Ann J Mulleners, Sébastien Le Fouest

This directory contains open-source data obtained using a single-bladed H-type vertical-axis wind turbine prototype with individual blade pitching. This data results from the optimisation of the blade's pitching kinematics using a genetic algorithm at two ...
Zenodo2024

Time scales of dynamic stall development on a vertical-axis wind turbine blade

Karen Ann J Mulleners, Sébastien Le Fouest, Daniel Marie Fernex

Vertical-axis wind turbines are excellent candidates to diversify wind energy technology, but their aerodynamic complexity limits industrial deployment. To improve the efficiency and lifespan of vertical-axis wind turbines, we desire data-driven models and ...
2023

Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit

Yohei Sato

This paper describes an investigation of the aerodynamic performance of a Hyperloop pod equipped with an axial compressor using CFD simulation. The compressor is expected to reduce the drag if the operational speed of the pod exceeds the Kantrowitz Limit ( ...
2021
Afficher plus
MOOCs associés (8)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.