Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Chromosome (genetic algorithm)In genetic algorithms (GA), or more general, evolutionary algorithms (EA), a chromosome (also sometimes called a genotype) is a set of parameters which define a proposed solution of the problem that the evolutionary algorithm is trying to solve. The set of all solutions, also called individuals according to the biological model, is known as the population. The genome of an individual consists of one, more rarely of several, chromosomes and corresponds to the genetic representation of the task to be solved.
Crossover (genetic algorithm)In genetic algorithms and evolutionary computation, crossover, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual reproduction in biology. Solutions can also be generated by cloning an existing solution, which is analogous to asexual reproduction. Newly generated solutions may be mutated before being added to the population.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
Chimie des fullerènesdroite|202x202px|Fullerène C60 La chimie des fullerènes est un domaine de la chimie organique consacré à l'étude des propriétés chimiques des fullerènes. La recherche dans ce domaine est motivée par la nécessité de fonctionnaliser les fullerènes et de modifier leurs propriétés. Par exemple, le fullerène est connu pour être insoluble mais l'ajout d'un groupe adapté peut améliorer sa solubilité. Par l'ajout d'un groupe polymérisable, un polymère du fullerène peut être obtenu.
Atomeredresse=1.25|vignette|Représentation d'un atome d' avec, apparaissant rosé au centre, le noyau atomique et, en dégradé de gris tout autour, le nuage électronique. Le noyau d', agrandi à droite, est formé de deux protons et de deux neutrons. redresse=1.25|vignette|Atomes de carbone à la surface de graphite observés par microscope à effet tunnel. Un atome est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec un autre. Les atomes sont les constituants élémentaires de toutes les substances solides, liquides ou gazeuses.
EndofullerèneUn endofullerène est un fullerène possédant des atomes, des ions ou des agrégats atomiques supplémentaires enfermés à l'intérieur de sa structure, au contraire des exofullerènes. Les premiers endofullerènes ont été synthétisés en 1985. Les endofullerènes métalliques peuvent être synthétisés par ablation laser d'une cible de graphite et d'oxyde métallique. Cependant, cette voie reste chère et peu productive.
FullerèneUn fullerène est une molécule composée de carbone pouvant prendre une forme géométrique rappelant celle d'une sphère, d'un ellipsoïde, d'un tube (appelé nanotube) ou d'un anneau. Les fullerènes sont similaires au graphite, composé de feuilles d'anneaux hexagonaux liés, mais contenant des anneaux pentagonaux et parfois heptagonaux, ce qui empêche la feuille d'être plate. Les fullerènes sont la troisième forme connue du carbone. Les fullerènes ont été découverts en 1985 par Harold Kroto, Robert Curl et Richard Smalley, ce qui leur valut le prix Nobel de chimie en 1996.
Intelligence distribuéeL'intelligence distribuée, appelée aussi intelligence en essaim, désigne l'apparition de phénomènes cohérents à l'échelle d'une population dont les individus agissent selon des règles simples. L'interaction ou la synergie entre actions individuelles simples peut de façons variées permettre l'émergence de formes, organisations, ou comportements collectifs, complexes ou cohérents, tandis que les individus eux se comportent à leur échelle indépendamment de toute règle globale.
Chimie quantiqueLa chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire.