Espace de longueurEn mathématiques, un espace de longueur est un espace métrique particulier, qui généralise la notion de variété riemannienne : la distance y est définie par une fonction vérifiant une axiomatique la rendant proche de l'idée concrète de distance. Les espaces de longueur ont été étudiés au début du par et sous le nom d'espaces métriques intrinsèques, et réintroduits plus récemment par Mikhaïl Gromov. Soit X un espace topologique. Une courbe dans X est une application continue , où I est un intervalle de .
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.