On Accelerated Hard Thresholding Methods for Sparse Approximation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper exploits recent developments in sparse approximation and compressive sensing to efficiently perform localization in a sensor network. We introduce a Bayesian framework for the localization problem and provide sparse approximations to its optimal ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
We consider the probe of astrophysical signals through radio interferometers with small field of view and baselines with non-negligible and constant component in the pointing direction. In this context, the visibilities measured essentially identify with a ...
This poster is a summary of recent work published in: Spread spectrum for imaging techniques in radio interferometry, Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, Mon. Not. R. Astron. Soc., 2009, Preprint arXiv:0907.0944v1. We consider the probe of ...
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
We consider the problem of reconstruction of astrophysical signals probed by radio interferometers with baselines bearing a non-negligible component in the pointing direction. The visibilities measured essentially identify with a noisy and incomplete Fouri ...
This article presents an alteration of greedy algorithms like thresholding or (Orthogonal) Matching Pursuit which improves their performance in finding sparse signal representations in redundant dictionaries. These algorithms can be split into a sensing an ...