Alliage à mémoire de formeUn alliage à mémoire de forme (AMF) est un alliage possédant plusieurs propriétés inédites parmi les matériaux métalliques : la capacité de garder en mémoire une forme initiale et d'y retourner même après une déformation, la possibilité d'alterner entre deux formes préalablement mémorisées lorsque sa température varie autour d'une température critique, et un comportement superélastique permettant des allongements sans déformation permanente supérieurs à ceux des autres métaux.
NitinolLe nickel-titane, connu aussi sous le nom de Nitinol est un alliage de nickel et de titane, dans lequel ces deux éléments sont approximativement présents dans les mêmes pourcentages. Cet alliage possède deux propriétés bien spécifiques : la mémoire de forme et une super-élasticité (connue également sous le nom de pseudo-élasticité). La mémoire de forme correspond à la capacité du nitinol à retrouver sa forme originale après avoir enduré une déformation, ainsi que celle d’alterner entre deux formes autour d’une température de transformation critique.
Matériau auto-cicatrisantvignette| Animation 1. Mesure 3D d'un matériau auto-cicatrisant de « Tosoh Corporation » mesuré à l'aide d'un microscope holographique numérique. La surface a été rayée par un outil métallique. Les matériaux auto-cicatrisants sont des matériaux synthétiques qui ont la capacité de se réparer automatiquement après avoir subi des dommages, et ce, sans aucun diagnostic externe du problème ou intervention humaine. En général, les matériaux se dégradent avec le temps en raison de la fatigue mécanique, des conditions environnementales ou des dommages subis dus à l'usure.
Shape-memory polymerShape-memory polymers (SMPs) are polymeric smart materials that have the ability to return from a deformed state (temporary shape) to their original (permanent) shape when induced by an external stimulus (trigger), such as temperature change. SMPs can retain two or sometimes three shapes, and the transition between those is often induced by temperature change. In addition to temperature change, the shape change of SMPs can also be triggered by an electric or magnetic field, light or solution.
Fragilisation par l'hydrogènevignette|Fissure d'un acier trempé provoquée par de l'hydrogène, observée au microscopie électronique à balayage. La fragilisation par l'hydrogène est un phénomène de fissuration de certains métaux au contact de l'hydrogène. Le rôle de l'hydrogène dissous dans un métal est connu depuis la fin du , mais encore incomplètement compris. Dès 1983, Airey et Van Rooyen démontrent qu'une présence d'hydrogène dissous dans le milieu environnant d'un métal peut aggraver le risque de corrosion, notamment de corrosion sous contrainte.
Fatigue (matériau)vignette|Photomicrographie de la progression des fissures dans un matériau dues à la fatigue. Image tirée de . La fatigue est l'endommagement local d'une pièce sous l'effet d'efforts variables : forces appliquées, vibrations, rafales de vent Alors que la pièce est conçue pour résister à des efforts donnés, la variation de l'effort, même à des niveaux bien plus faibles que ceux pouvant provoquer sa rupture, peut à la longue provoquer sa rupture. Les essais de fatigue permettent de déterminer la résistance des matériaux à de telles faibles charges répétées.
TénacitéLa ténacité est la capacité d'un matériau à résister à la propagation d'une fissure. On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, mais il s'agit d'une définition anglophone. En anglais, on fait la différence entre « toughness », l'énergie de déformation à rupture par unité de volume (, ce qui correspond aussi à des pascals) et « », la ténacité au sens de résistance à la propagation de fissure.
Mécanique de la ruptureLa catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
Réparation de l'ADNright|vignette|Chromosomes montrant de nombreuses lésions. La réparation de l'ADN est un ensemble de processus par lesquels une cellule identifie et corrige les dommages aux molécules d'ADN qui codent son génome. Dans les cellules, l'acide désoxyribonucléique (ADN) est soumis continuellement à des activités métaboliques normales et à des facteurs environnementaux portant atteinte à son intégrité. Ces facteurs environnementaux sont le plus souvent de nature chimique comme les radicaux libres de l'oxygène et les agents alkylants, ou physique, comme les radiations ultraviolettes et les rayonnements ionisants.
Rupture (matériau)thumb|Courbe de traction idéale d'un matériau ductile thumb|Courbe de traction typique pour un matériau fragile En science des matériaux, la rupture ou fracture d'un matériau est la séparation, partielle (comme une crique ou une fissure ou une brisure) ou complète, en deux ou plusieurs pièces sous l'action d'une contrainte. Une rupture peut être souhaitée par le concepteur de la pièce comme dans le cas de la conception de dispositifs de sécurité ou au contraire celui-ci cherche à éviter cette rupture en mettant en adéquation la fonction de cette pièce avec les dimensionnements et choix des matériaux utilisés et des procédés de fabrication.