Disposable cylindrical shaken bioreactors using plastic bags or vessels represent a promising alternative to stainless steel bioreactors, because they are flexible, cost-effective and can be pre-sterilized. Unlike conventional well-established steel bioreactors, however, such disposable bioreactor systems have not yet been precisely characterized. Thus, the aim of this current work is to introduce a new power input correlation as a potential means to characterize the hydrodynamics of these new systems. A set of rel- evant power input variables was defined and transformed into dimensionless numbers by using the Buckingham’s pi-Theorem. These numbers were then experimentally varied to quantify the relationship among the numbers. A simple correlation was generated for the power input with seven variables. The application of this new correlation was validated using 200 L and 2000 L orbitally shaken bioreactors. In conclusion, the proposed correlation is a useful tool to predict the power input and hydrodynamics during cell cultivation in cylindrical shaken bioreactors of all scales.
Marilyne Andersen, Sabine Süsstrunk, Caroline Karmann, Bahar Aydemir, Kynthia Chamilothori, Seungryong Kim
Meritxell Bach Cuadra, Cristina Granziera, Guillaume Bonnier, Mario Joao Fartaria de Oliveira, Po-Jui Lu