This paper introduces p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We work out both worst case and average case recovery analyses of this algorithm and show that the latter results in much weaker conditions on the dictionary. Numerical simulations confirm our theoretical findings and show that p-thresholding is an interesting low complexity alternative to simultaneous greedy, or convex relaxation algorithms for processing sparse multichannel signals with balanced coefficients.
Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi
, ,
Corentin Jean Dominique Fivet, Jonas Warmuth, Jan Friedrich Georg Brütting