Quantification (signal)En traitement des signaux, la quantification est le procédé qui permet d'approcher un signal continu par les valeurs d'un ensemble discret d'assez petite taille. On parle aussi de quantification pour approcher un signal à valeurs dans un ensemble discret de grande taille par un ensemble plus restreint. L'application la plus courante de la quantification est la conversion analogique-numérique mais elle doit le développement de sa théorie aux problèmes de quantification pour la compression de signaux audio ou .
Tomographic reconstructionTomographic reconstruction is a type of multidimensional inverse problem where the challenge is to yield an estimate of a specific system from a finite number of projections. The mathematical basis for tomographic imaging was laid down by Johann Radon. A notable example of applications is the reconstruction of computed tomography (CT) where cross-sectional images of patients are obtained in non-invasive manner.
Coefficient binomial de GaussEn mathématiques, les coefficients binomiaux de Gauss ou coefficients q-binomiaux ou encore q-polynômes de Gauss sont des q -analogues des coefficients binomiaux, introduits par C. F. Gauss en 1808 . Le coefficient q-binomial, écrit ou , est un polynôme en à coefficients entiers, qui donne, lorsque est une puissance de nombre premier, le nombre de sous-espaces vectoriels de dimension d'un espace vectoriel de dimension sur un corps fini à éléments.
Art médiévalL’art médiéval couvre un ensemble large de temps et de lieux, sur plus de d'histoire de l'art en Europe, au Moyen-Orient et en Afrique du Nord. Cela inclut de nombreux mouvements de l'art et périodes, art régional ou national, genres, renaissances, métiers d'artistes, et les artistes eux-mêmes. Les historiens de l'Art classifient l'art médiéval en périodes et mouvements principaux, les relations entre ces périodes sont parfois plus subtiles.