Signal logiqueUn signal logique est un signal physique qui ne peut prendre que 2 valeurs, un niveau haut (en anglais "high" = "H"), et un niveau bas (en anglais "low" = "L"). Dans les ordinateurs et d'autres systèmes numériques, une forme d'onde qui alterne entre deux niveaux de tension représentant les deux états d'une valeur booléenne (0 et 1) est désigné comme un signal logique. Pour tout ce qui concerne la logique combinatoire ces deux niveaux suffisent.
Langage de description de matérielUn langage de description de matériel, ou du matériel (ou HDL pour hardware description language en anglais) est un langage informatique permettant la description d'un circuit électronique au niveau des transferts de registres (RTL). Celui-ci peut décrire les fonctions réalisées par le circuit (description comportementale) ou les portes logiques utilisées par le circuit (description structurelle). Il est possible d'observer le fonctionnement d'un circuit électronique modélisé dans un langage de description grâce à la simulation.
General Purpose Input/Outputthumb|Test de contrôle d'une hélice via les GPIO d'une Arduino et une platine d'expérimentation Les ports GPIO (General Purpose Input/Output, littéralement Entrée-sortie à usage général) sont des ports d'entrées-sorties très utilisés dans le monde des microcontrôleurs, en particulier dans le domaine de l'électronique embarquée, qui ont fait leur apparition au début des années 1980. Elles sont placées sur un circuit électronique afin de communiquer avec des composants électroniques et circuits externes.
RetenueIn elementary arithmetic, a carry is a digit that is transferred from one column of digits to another column of more significant digits. It is part of the standard algorithm to add numbers together by starting with the rightmost digits and working to the left. For example, when 6 and 7 are added to make 13, the "3" is written to the same column and the "1" is carried to the left. When used in subtraction the operation is called a borrow.
Ordinal arithmeticIn the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.