Publication

Spam Fighting in Social Tagging Systems

Touradj Ebrahimi, Sasan Yazdani, Ivan Ivanov
2012
Article de conférence
Résumé

Tagging in online social networks is very popular these days, as it facilitates search and retrieval of diverse resources available online. However, noisy and spam annotations often make it difficult to perform an efficient search. Users may make mistakes in tagging and irrelevant tags and resources may be maliciously added for advertisement or self-promotion. Since filtering spam annotations and spammers is time-consuming if it is done manually, machine learning approaches can be employed to facilitate this process. In this paper, we propose and analyze a set of distinct features based on user behavior in tagging and tags popularity to distinguish between legitimate users and spammers. The effectiveness of the proposed features is demonstrated through a set of experiments on a dataset of social bookmarks.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.