Publication

Augmented-SVM: Automatic space partitioning for combining multiple non-linear dynamics

Ashwini Shukla
2012
Article de conférence
Résumé

Non-linear dynamical systems (DS) have been used extensively for building generative models of human behavior. Their applications range from modeling brain dynamics to encoding motor commands. Many schemes have been proposed for encoding robot motions using dynamical systems with a single attractor placed at a predefined target in state space. Although these enable the robots to react against sudden perturbations without any re-planning, the motions are always directed towards a single target. In this work, we focus on combining several such DS with distinct attractors, resulting in a multi-stable DS. We show its applicability in reach-to-grasp tasks where the attractors represent several grasping points on the target object. While exploiting multiple attractors provides more flexibility in recovering from unseen perturbations, it also increases the complexity of the underlying learning problem. Here we present the \emph{Augmented-SVM} (A-SVM) model which inherits region partitioning ability of the well known SVM classifier and is augmented with novel constraints derived from the individual DS. The new constraints modify the original SVM dual whose optimal solution then results in a new class of support vectors (SV). These new SV ensure that the resulting multi-stable DS incurs minimum deviation from the original dynamics and is stable at each of the attractors within a finite region of attraction. We show, via implementations on a simulated 10 degrees of freedom mobile robotic platform, that the model is capable of real-time motion generation and is able to adapt on-the-fly to perturbations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Attracteur
Dans l'étude des systèmes dynamiques, un attracteur (ou ensemble-limite) est un ensemble d'états vers lequel un système évolue de façon irréversible en l'absence de perturbations. Constituants de base de la théorie du chaos, au moins cinq types sont définis : ponctuel, quasi périodique, périodique, étrange et spatial. Stephen Smale serait à l'origine du terme attracteur.
Système dynamique
En mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Attracteur de Lorenz
L’attracteur de Lorenz est une structure fractale correspondant au comportement à long terme de l'oscillateur de Lorenz. L'attracteur montre comment les différentes variables du système dynamique évoluent dans le temps en une trajectoire non périodique. En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie. Le modèle de Lorenz, appelé aussi système dynamique de Lorenz ou oscillateur de Lorenz, est une modélisation simplifiée de phénomènes météorologiques basée sur la mécanique des fluides.
Afficher plus
Publications associées (47)

Stability: a search for structure

Wouter Jongeneel

In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
EPFL2024

The dynamics of unsteady frictional slip pulses

Thibault Didier Roch, Fabian Barras

Self-healing slip pulses are major spatiotemporal failure modes of frictional systems, featuring a characteristic size L(t) and a propagation velocity c(p)(t) (t is time). Here, we develop a theory of slip pulses in realistic rate- and state-dependent fric ...
Washington2023

Higher-order organization of multivariate time series

Enrico Amico, Andrea Santoro

Time series analysis has proven to be a powerful method to characterize several phenomena in biology, neuroscience and economics, and to understand some of their underlying dynamical features. Several methods have been proposed for the analysis of multivar ...
NATURE PORTFOLIO2023
Afficher plus
MOOCs associés (2)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.