Temporal difference learningLe Temporal Difference (TD) learning est une classe d'algorithmes d'apprentissage par renforcement sans modèle. Ces algorithmes échantillonnent l'environnement de manière aléatoire à la manière des méthodes de Monte Carlo. Ils mettent à jour la politique (i.e. les actions à prendre dans chaque état) en se basant sur les estimations actuelles, comme les méthodes de programmation dynamique. Les méthodes TD ont un lien avec les modèles TD dans l'apprentissage animal. vignette|151x151px|Diagramme backup.
RandomizationRandomization is the process of making something random. Randomization is not haphazard; instead, a random process is a sequence of random variables describing a process whose outcomes do not follow a deterministic pattern, but follow an evolution described by probability distributions. For example, a random sample of individuals from a population refers to a sample where every individual has a known probability of being sampled. This would be contrasted with nonprobability sampling where arbitrary individuals are selected.
Générateur de nombres aléatoiresUn générateur de nombres aléatoires, random number generator (RNG) en anglais, est un dispositif capable de produire une suite de nombres pour lesquels il n'existe aucun lien calculable entre un nombre et ses prédécesseurs, de façon que cette séquence puisse être appelée « suite de nombres aléatoires ». Par extension, on utilise ce terme pour désigner des générateurs de nombres pseudo aléatoires, pour lesquels ce lien calculable existe, mais ne peut pas « facilement » être déduit.
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Chemical synapseChemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous system. They are crucial to the biological computations that underlie perception and thought. They allow the nervous system to connect to and control other systems of the body. At a chemical synapse, one neuron releases neurotransmitter molecules into a small space (the synaptic cleft) that is adjacent to another neuron.
Générateur de nombres aléatoires matérielEn informatique, un générateur de nombres aléatoires matériel (aussi appelé générateur de nombres aléatoires physique ; en anglais, hardware random number generator ou true random number generator) est un appareil qui génère des nombres aléatoires à partir d'un phénomène physique, plutôt qu'au moyen d'un programme informatique. De tels appareils sont souvent basés sur des phénomènes microscopiques qui génèrent de faibles signaux de bruit statistiquement aléatoires, tels que le bruit thermique ou l'effet photoélectrique.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
NeurotransmetteurLes neurotransmetteurs, ou neuromédiateurs, sont des composés chimiques libérés par les neurones (et parfois par les cellules gliales) agissant sur d'autres neurones, appelés neurones postsynaptiques, ou, plus rarement, sur d'autres types de cellules (comme les cellules musculaires et les cellules gliales comme les astrocytes). Les neurotransmetteurs sont stockés au niveau de l'élément présynaptique dans des vésicules. Le contenu de ces vésicules est libéré (de à molécules en moyenne) dans l'espace synaptique au moment de l'arrivée d'un potentiel d'action.
CognitivismeLe cognitivisme est le courant de recherche scientifique endossant l'hypothèse selon laquelle la pensée est analogue à un processus de traitement de l'information, cadre théorique qui s'est opposé, dans les années 1950, au béhaviorisme. La notion de cognition y est centrale. Elle est définie en lien avec l'intelligence artificielle comme une manipulation de symboles ou de représentations symboliques effectuée selon un ensemble de règles. Elle peut être réalisée par n'importe quel dispositif capable d'opérer ces manipulations.