Publication

Omnidirectional Light Field Analysis and Reconstruction

Luigi Bagnato
2012
Thèse EPFL
Résumé

Digital photography exists since 1975, when Steven Sasson attempted to build the first digital camera. Since then the concept of digital camera did not evolve much: an optical lens concentrates light rays onto a focal plane where a planar photosensitive array transforms the light intensity into an electric signal. During the last decade a new way of conceiving digital photography emerged: a photography is the acquisition of the entire light ray field in a confined region of space. The main implication of this new concept is that a digital camera does not acquire a 2-D signal anymore, but a 5-D signal in general. Acquiring an image becomes more demanding in terms of memory and processing power; at the same time, it offers the users a new set of possibilities, like choosing dynamically the focal plane and the depth of field of the final digital photo. In this thesis we develop a complete mathematical framework to acquire and then reconstruct the omnidirectional light field around an observer. We also propose the design of a digital light field camera system, which is composed by several pinhole cameras distributed around a sphere. The choice is not casual, as we take inspiration from something already seen in nature: the compound eyes of common terrestrial and flying insects like the house fly. In the first part of the thesis we analyze the optimal sampling conditions that permit an efficient discrete representation of the continuous light field. In other words, we will give an answer to the question: how many cameras and what resolution are needed to have a good representation of the 4-D light field? Since we are dealing with an omnidirectional light field we use a spherical parametrization. The results of our analysis is that we need an irregular (i.e., not rectangular) sampling scheme to represent efficiently the light field. Then, to store the samples we use a graph structure, where each node represents a light ray and the edges encode the topology of the light field. When compared to other existing approaches our scheme has the favorable property of having a number of samples that scales smoothly for a given output resolution. The next step after the acquisition of the light field is to reconstruct a digital picture, which can be seen as a 2-D slice of the 4-D acquired light field. We interpret the reconstruction as a regularized inverse problem defined on the light field graph and obtain a solution based on a diffusion process. The proposed scheme has three main advantages when compared to the classic linear interpolation: it is robust to noise, it is computationally efficient and can be implemented in a distributed fashion. In the second part of the thesis we investigate the problem of extracting geometric information about the scene in the form of a depth map. We show that the depth information is encoded inside the light field derivatives and set up a TV-regularized inverse problem, which efficiently calculates a dense depth map of the scene while respecting the discontinuities at the boundaries of objects. The extracted depth map is used to remove visual and geometrical artifacts from the reconstruction when the light field is under-sampled. In other words, it can be used to help the reconstruction process in challenging situations. Furthermore, when the light field camera is moving temporally, we show how the depth map can be used to estimate the motion parameters between two consecutive acquisitions with a simple and effective algorithm, which does not require the computation nor the matching of features and performs only simple arithmetic operations directly in the pixel space. In the last part of the thesis, we introduce a novel omnidirectional light field camera that we call Panoptic. We obtain it by layering miniature CMOS imagers onto an hemispherical surface, which are then connected to a network of FPGAs. We show that the proposed mathematical framework is well suited to be embedded in hardware by demonstrating a real time reconstruction of an omnidirectional video stream at 25 frames per second.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (43)
Appareil photographique plénoptique
Un appareil photographique plénoptique est un appareil photographique numérique qui utilise une matrice de micro-objectifs captant l'information de profondeur du champ lumineux, composée de l'intensité lumineuse d'une scène comme sur un appareil classique, mais aussi la direction d'arrivée des rayons lumineux. Ceci permet en particulier de faire la mise au point par post-traitement. En 2007, Adobe présentait quelques axes de recherches sur les appareils plénoptiques notamment en optique.
Photographie numérique
La photographie numérique recouvre l'ensemble des techniques permettant l'obtention d'une photographie via l'utilisation d'un capteur électronique comme surface photosensible, ainsi que les techniques de traitement et de diffusion qui en découlent. On l'oppose à la photographie argentique. Appareil photographique numérique Les systèmes optiques (objectif, viseur optique, chambre reflex), de ces appareils sont voisins des solutions argentiques.
Appareil photographique numérique
Un appareil photographique numérique (ou APN) est un appareil photographique qui recueille la lumière sur un capteur photographique électronique, plutôt que sur une pellicule photographique, et qui convertit l'information reçue par ce support pour la coder numériquement. Un appareil photo numérique utilise un capteur CCD ou CMOS pour acquérir les images, et les enregistre habituellement sur des cartes mémoire (CompactFlash, SmartMedia, Memory Stick, Secure Digital, etc.).
Afficher plus
Publications associées (73)

LenslessPiCam: A Hardware and Software Platform for Lensless Computational Imaging with a Raspberry Pi

Martin Vetterli, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni

Lensless imaging seeks to replace/remove the lens in a conventional imaging system. The earliest cameras were in fact lensless, relying on long exposure times to form images on the other end of a small aperture in a darkened room/container (camera obscura) ...
2022

Between digital and territorial turns: A forking path

Elena Cogato Lanza, Chiara Cavalieri

This chapter looks at the intertwined evolution of two different ideas throughout the past century: that of ‘territory’, that has been reshaped and redefined in the field of architecture and urbanism, and that of ‘digital’, that while becoming dominant, ha ...
Routledge2022

Mathematical Foundations of Adaptive Isogeometric Analysis

Annalisa Buffa, Rafael Vazquez Hernandez

This paper reviews the state of the art and discusses recent developments in the field of adaptive isogeometric analysis, with special focus on the mathematical theory. This includes an overview of available spline technologies for the local resolution of ...
SPRINGER2022
Afficher plus
MOOCs associés (28)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.