A Dynamical System-based Approach to Modeling Stable Robot Control Policies via Imitation Learning
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Bistable structures in nature are unparalleled for their fast response and force amplification even with the most minute physical stimula-tion. However, current works on bistable structures mainly focus on their stable states, while promising intermediate ...
CELL PRESS2023
Robots are employed to assist humans in lengthy, challenging, and repetitive tasks. However, the fields of rehabilitation, haptics, and assistive robotics have shown a significant need to support and interact with people in their everyday life. To facilita ...
Bi-manual picking up of objects to toss them on a conveyor belt are dynamic manipulation activities generated daily in the industry. Such repetitive and physically demanding tasks are still done largely by humans for lack of similarly fast, precise, and ro ...
Quadratic Programming (QP)-based controllers allow many robotic systems, such as humanoids, to successfully undertake complex motions and interactions. However, these approaches rely heavily on adequately capturing the underlying model of the environment a ...
Robot motion planning involves finding a feasible path for a robot to follow while satisfying a set of constraints and optimizing an objective function. This problem is critical for enabling robots to navigate and perform tasks in realworld environments. H ...
In construction robotics, a conventional design-to-fabrication work-flow starts with designing a structure, followed by task and robotic motion planning, and ultimately, fabrication. However, this approach can prove unsuccessful, as we may only discover th ...
In this thesis, we address the complex issue of collision avoidance in the joint space of robots. Avoiding collisions with both the robot's own body parts and obstacles in the environment is a critical constraint in motion planning and is crucial for ensur ...
Programming intelligent robots requires robust controllers that can achieve desired tasks while adapting to the changes in the task and the environment. In this thesis, we address the challenges in designing such adaptive and anticipatory feedback controll ...
Controlling complex tasks in robotic systems, such as circular motion for cleaning or following curvy lines, can be dealt with using nonlinear vector fields. This article introduces a novel approach called the rotational obstacle avoidance method (ROAM) fo ...
Piscataway2024
, ,
During reaching actions, the human central nerve system (CNS) generates the trajectories that optimize effort and time. When there is an obstacle in the path, we make sure that our arm passes the obstacle with a sufficient margin. This comfort margin varie ...