Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Formal specificationIn computer science, formal specifications are mathematically based techniques whose purpose are to help with the implementation of systems and software. They are used to describe a system, to analyze its behavior, and to aid in its design by verifying key properties of interest through rigorous and effective reasoning tools. These specifications are formal in the sense that they have a syntax, their semantics fall within one domain, and they are able to be used to infer useful information.
Raisonnement par disjonction de casProof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. This is a method of direct proof. A proof by exhaustion typically contains two stages: A proof that the set of cases is exhaustive; i.e.
Null pointerIn computing, a null pointer or null reference is a value saved for indicating that the pointer or reference does not refer to a valid object. Programs routinely use null pointers to represent conditions such as the end of a list of unknown length or the failure to perform some action; this use of null pointers can be compared to nullable types and to the Nothing value in an option type. A null pointer should not be confused with an uninitialized pointer: a null pointer is guaranteed to compare unequal to any pointer that points to a valid object.
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».
CurryficationEn informatique, plus précisément en programmation fonctionnelle, la curryfication est la transformation d'une fonction à plusieurs arguments en une fonction à un argument qui retourne une fonction sur le reste des arguments. L'opération inverse est possible et s'appelle la décurryfication. Le terme vient du nom du mathématicien américain Haskell Curry, bien que cette opération ait été introduite pour la première fois par Moses Schönfinkel. Considérons une fonction add qui prend deux arguments (x et y) et en renvoie la somme.