Capturing and Animating the Morphogenesis of Polygonal Tree Models
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
We approach the graph generation problem from a spectral perspective by first generating the dominant parts of the graph Laplacian spectrum and then building a graph matching these eigenvalues and eigenvectors. Spectral conditioning allows for direct model ...
Many optimization, inference, and learning tasks can be accomplished efficiently by means of decentralized processing algorithms where the network topology (i.e., the graph) plays a critical role in enabling the interactions among neighboring nodes. There ...
Decision trees have been widely used as classifiers in many machine learning applications thanks to their lightweight and interpretable decision process. This paper introduces Tree in Tree decision graph (TnT), a framework that extends the conventional dec ...
Curran Associates, Inc, (NIPS '21: Proceedings of the 35th International Conference on Neural Information Processing Systems)2021
Within the framework of a simple model for social influence, the Taylor model, we analytically investigate the role of stubborn agents in the overall opinion dynamics of networked systems. Similar to zealots, stubborn agents are biased towards a certain op ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
We study in this thesis the asymptotic behavior of optimal paths on a random graph model, the configuration model, for which we assign continuous random positive weights on its edges.
We start by describing the asymptotic behavior of the diameter and the f ...
Can one reduce the size of a graph without significantly altering its basic properties? The graph reduction problem is hereby approached from the perspective of restricted spectral approximation, a modification of the spectral similarity measure used for g ...
Graph processing systems are used in a wide variety of fields, ranging from biology to social networks.
Algorithms to mine graphs incur many random accesses, and the sparse nature of the graphs of interest, exacerbates this. As DRAM sustains high bandwidt ...