Solid solution strengtheningIn metallurgy, solid solution strengthening is a type of alloying that can be used to improve the strength of a pure metal. The technique works by adding atoms of one element (the alloying element) to the crystalline lattice of another element (the base metal), forming a solid solution. The local nonuniformity in the lattice due to the alloying element makes plastic deformation more difficult by impeding dislocation motion through stress fields. In contrast, alloying beyond the solubility limit can form a second phase, leading to strengthening via other mechanisms (e.
ViscoplasticitéLa viscoplasticité est la théorie en mécanique des milieux continus qui décrit le comportement inélastique dépendant de la vitesse de déformation des solides. La dépendance à la vitesse de déformation, dans ce contexte signifie que les déformations sont proportionnelles à la vitesse de chargement. Le comportement inélastique dans le cas de la viscoplasticté est un comportement plastique ce qui signifie que le matériau subit des déformations irréversibles quand un certain niveau de chargement est atteint.
Loi de Hall-PetchIn materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain) size. It is based on the observation that grain boundaries are insurmountable borders for dislocations and that the number of dislocations within a grain has an effect on how stress builds up in the adjacent grain, which will eventually activate dislocation sources and thus enabling deformation in the neighbouring grain as well.
Forêtalt=|vignette|344x344px|Forêt tropicale d'Amérique du Sud vignette|upright=1.3|Vue intérieure d'une forêt tempérée mixte en France. vignette|upright=1.3|Bush australien. vignette|upright=1.3|Forêt inondée en Pologne. vignette|upright=1.3|Forêt tempérée de résineuxîles San Juan, État de Washington. Une forêt ou un massif forestier est un écosystème, relativement étendu, constitué principalement d'un d'arbres, arbustes et arbrisseaux (fruticée), ainsi que de l'ensemble des autres espèces qui lui sont associées et qui vivent en interaction au sein de ce milieu.
SuperalliageUn superalliage ou alliage à haute performance est un alliage métallique présentant une excellente résistance mécanique et une bonne résistance au fluage à haute température (typiquement sa température de fusion), une bonne stabilité surfacique ainsi qu'une bonne résistance à la corrosion et à l'oxydation. Les superalliages présentent typiquement une structure cristalline cubique à faces centrées de type austénitique. Les éléments d'alliages à la base d'un superalliage sont le plus souvent le nickel, le cobalt et le fer, mais aussi le titane et l'aluminium.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Concentration de contraintethumb|La fissure dans le béton a été amorcée par un « effet de pointe » (concentration de contrainte). La concentration de contrainte est un phénomène survenant lorsque la section d'une pièce varie de manière brutale : trou (perçage), rainure, épaulement, gorge, fond de fissure, etc. Une pièce présente des points de fragilité dus à la forme. On constate que l'apparition des fissures, et la rupture, a en général lieu dans des zones présentant des angles vifs rentrants ou bien des perçages.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.