Publication

Circadian and Wake-Dependent Effects on the Pupil Light Reflex in Response to Narrow-Bandwidth Light Pulses

Lorette Leon
2012
Article
Résumé

PURPOSE. Nonvisual light-dependent functions in humans are conveyed mainly by intrinsically photosensitive retinal ganglion cells, which express melanopsin as photopigment. We aimed to identify the effects of circadian phase and sleepiness across 24 hours on various aspects of the pupil response to light stimulation. METHODS. We tested 10 healthy adults hourly in two 12-hour sessions covering a 24-hour period. Pupil responses to narrow bandwidth red (635 +/- 18 nm) and blue (463 +/- 24 nm) light (duration of 1 and 30 seconds) at equal photon fluxes were recorded, and correlated with salivary melatonin concentrations at the same circadian phases and to subjective sleepiness ratings. The magnitude of pupil constriction was determined from minimal pupil size. The post-stimulus pupil response was assessed from the pupil size at 6 seconds following light offset, the area within the redilation curve, and the exponential rate of redilation. RESULTS. Among the measured parameters, the pupil size 6 seconds after light offset correlated with melatonin concentrations (P < 0.05) and showed a significant modulation over 24 hours with maximal values after the nocturnal peak of melatonin secretion. In contrast, the post-stimulus pupil response following red light stimulation correlated with subjective sleepiness (P < 0.05) without significant changes over 24 hours. CONCLUSIONS. The post-stimulus pupil response to blue light as a marker of intrinsic melanopsin activity demonstrated a circadian modulation. In contrast, the effect of sleepiness was more apparent in the cone contribution to the pupil response. Thus, pupillary responsiveness to light is under influence of the endogenous circadian clock and subjective sleepiness. (Invest Ophthalmol Vis Sci. 2012;53:4546-4555) DOI: 10.1167/iovs.12-9494

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Pupillary response
Pupillary response is a physiological response that varies the size of the pupil, via the optic and oculomotor cranial nerve. A constriction response (miosis), is the narrowing of the pupil, which may be caused by scleral buckles or drugs such as opiates/opioids or anti-hypertension medications. Constriction of the pupil occurs when the circular muscle, controlled by the parasympathetic nervous system (PSNS), contracts, and also to an extent when the radial muscle relaxes.
Pupille
vignette|La pupille est la zone transparente au centre de l’œil (rond noir). Dans l'œil, la pupille (ou prunelle) est le trou situé au milieu de l'iris. vignette|Contraction et dilation de la pupille. On peut comparer la pupille au diaphragme d'un appareil photographique. Elle nous apparaît noire étant donné que la majorité de la lumière entrant dans l'œil est absorbée par les tissus, en particulier la rétine. Chez les humains et chez d'autres espèces animales, la taille de la pupille est contrôlée par des mouvements involontaires de contraction (myosis) et de détente (mydriase) du muscle de l'iris.
Rythme circadien
Le regroupe tous les processus biologiques cycliques d'une durée d'environ 24 heures. Un rythme circadien est un rythme biologique d’une durée de environ, qui possède au moins un cycle par période de . Le terme « circadien », inventé par Franz Halberg, vient du latin circa, « autour», et dies, « jour », et signifie littéralement cycle qui dure « environ un jour » Halberg, Franz. (1963). Circadian (about Twenty-Four-Hour) Rhythms in Experimental Medicine [Abridged]. Proceedings of the Royal Society of Medicine.
Afficher plus
Publications associées (57)

Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior

Cédric Gobet, Sylviane Métairon, Frédéric Bruno Martin Gachon, Benjamin Dieter Weger

The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circad ...
AMER ASSOC ADVANCEMENT SCIENCE2023

Statistical physics of periodic biological processes

Lorenzo Talamanca

Earth rotation around its axis imposes a 24-hour rhythmicity to all life on the planet.Rather than passively responding to these periodic changes, nature has given us an internal timekeeper, the circadian clock, to anticipate to our advantage the fluctuati ...
EPFL2023

Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling

Felix Naef, Nicholas Edward Phillips

Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in ...
CELL PRESS2023
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.