Matière amorpheUn matériau amorphe est une substance dans laquelle les atomes ne respectent aucun ordre à moyenne et grande distance (comparée au diamètre moléculaire), ce qui la distingue des composés cristallisés. La condition sur la distance est importante car la structure des matériaux amorphes présente très souvent un ordre à courte distance (quelques diamètres moléculaires). Les verres, les élastomères et les liquides sont des substances amorphes. En géosciences, le terme générique de minéraloïde est utilisé pour désigner la classe de ces matériaux non-cristallins.
Crystalline siliconCrystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Cellule photoélectrochimiqueUne cellule photoélectrochimique utilise la lumière et des réactions chimiques pour produire de l'électricité. C'est un composant électronique qui, exposé à la lumière (photon), décompose l'eau en oxygène et hydrogène. On peut ensuite utiliser cet hydrogène dans des piles à combustible ou des moteurs à hydrogène. Une telle cellule photoélectrochimique est formée d'une électrode photosensible immergée dans un électrolyte ou dans de l'eau.
Film photovoltaïqueUn film photovoltaïque ou cellule solaire en couche mince ou encore couche mince photovoltaïque est une technologie de cellules photovoltaïques de deuxième génération, consistant à l'incorporation d'une ou plusieurs couches minces (ou TF pour ) de matériau photovoltaïque sur un substrat, tel que du verre, du plastique ou du métal. Les couches minces photovoltaïques commercialisées actuellement utilisent plusieurs matières, notamment le tellurure de cadmium (de formule CdTe), le diséléniure de cuivre-indium-gallium (CIGS) et le silicium amorphe (a-Si, TF-Si).
Craquage de l'eauLe craquage de l'eau est un processus aboutissant à la dissociation de l'hydrogène et de l'oxygène de l'eau, atomes composant la molécule d'eau , par thermolyse, électrolyse ou radiolyse. La réaction thermochimique commence à haute température (entre ) pour devenir complète vers . Le bilan de la décomposition d'une molécule d'eau ci-après : H2O → H2 + O2 s'établit comme suit, pour une mole d'eau : comme la molécule d'eau H2O est constituée de deux liaisons O-H dont chacune a une énergie molaire de , leur rupture absorbe ; la recomposition des molécules de dihydrogène gazeux produit un apport d'énergie : 2 H → H2 + ; la recomposition du dioxygène libère quant à elle : 2 O → O2 + , soit par mole d'eau initiale.
Alliage métallique amorphevignette|Alliage métallique amorphe. vignette|Pièces d'un alliage métallique amorphe de composition chimique . Le diamètre du cylindre est de . Un alliage métallique amorphe, ou métal amorphe, est un alliage métallique solide doté d'une structure amorphe plutôt que cristalline. Ces matériaux peuvent être obtenus par refroidissement très rapide depuis l'état fondu de l'alliage, ou par d'autres méthodes.
Craquage de l'eau par photocatalyseLe craquage de l'eau par photocatalyse est l'utilisation de photons suffisamment énergétiques pour craquer les molécules d'eau en les clivant de manière électrochimique afin de produire hydrogène et oxygène , selon une réaction chimique qui s'écrit simplement : 2 + 4 hν ⟶ 2 + , l'énergie minimale des photons incidents étant . Une telle réaction a été décrite pour la première fois en 1972 pour des longueurs d'onde inférieures à .
Bande interditeredresse=.9|vignette|Bandes d'un semiconducteur. La bande interdite d'un matériau, ou gap, est l'intervalle, situé entre la bande de valence et la bande de conduction, dans lequel la densité d'états électroniques est nulle, de sorte qu'on n'y trouve pas de niveau d'énergie électronique. La largeur de bande interdite, ou band gap en anglais, est une caractéristique fondamentale des matériaux semiconducteurs ; souvent notée , elle est généralement exprimée en électronvolts (eV). Fichier:Band filling diagram.
PolyamorphismeEn science des matériaux, le polyamorphisme est la possibilité pour une substance d'exister sous différentes formes amorphes. C'est l'analogue du polymorphisme des matériaux cristallins. Bien que l'arrangement atomique d'un matériau amorphe ne possède pas d'ordre à grande distance certaines propriétés de différents polyamorphes, telles que la densité, peuvent être différentes.
Semi-conducteur à large bandevignette|Schéma d'un semi-conducteur à large bande Un semi-conducteur à large bande est un semi-conducteur dont la largeur de la bande interdite, entre la bande de valence et la bande de conduction, est significativement plus importante que celle du silicium. Le seuil exact dépend du domaine d'utilisation. Commercialement, du fait de ses caractéristiques et de son abondance, le silicium est le semi-conducteur le plus utilisé. Les composants électroniques basés sur le silicium peuvent cependant présenter des limites fonctionnelles.