Théorie d'Everettvignette|redresse=1.3|Le paradoxe du chat de Schrödinger dans l’interprétation d’Everett des mondes multiples (many worlds). Ici, chaque évènement est une bifurcation. Le chat est à la fois mort et vivant, avant même l'ouverture de la boite, mais le chat mort et le chat vivant existent dans des bifurcations différentes de l'univers, qui sont tout aussi réelles l'une que l'autre.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Interprétation de la mécanique quantiqueUne interprétation de la mécanique quantique est une tentative d'explication de la façon dont la théorie mathématique de la mécanique quantique « correspond » à la réalité. Bien que la mécanique quantique ait fait l'objet de démonstrations rigoureuses dans une gamme extraordinairement large d'expériences (aucune prédiction de la mécanique quantique n'a été contredite par l'expérience), il existe un certain nombre d'écoles de pensée concurrentes sur son interprétation.
Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Extreme learning machineEn apprentissage automatique, le terme extreme learning machine (machine à apprentissage extrême) fait référence à un type de réseau de neurones. Sa spécificité est de n'avoir qu'une seule couche de nœuds cachés, où les poids des entrées de connexion de nœuds cachés sont répartis au hasard et jamais mis à jour. Ces poids entre les nœuds cachés d'entrée et les sorties sont appris en une seule étape, ce qui revient essentiellement à l'apprentissage d'un modèle linéaire.
Penrose interpretationThe Penrose interpretation is a speculation by Roger Penrose about the relationship between quantum mechanics and general relativity. Penrose proposes that a quantum state remains in superposition until the difference of space-time curvature attains a significant level. Penrose's idea is inspired by quantum gravity, because it uses both the physical constants and .
Synaptic weightIn neuroscience and computer science, synaptic weight refers to the strength or amplitude of a connection between two nodes, corresponding in biology to the amount of influence the firing of one neuron has on another. The term is typically used in artificial and biological neural network research. In a computational neural network, a vector or set of inputs and outputs , or pre- and post-synaptic neurons respectively, are interconnected with synaptic weights represented by the matrix , where for a linear neuron where the rows of the synaptic matrix represent the vector of synaptic weights for the output indexed by .
Forêt d'arbres décisionnelsvignette|Illustration du principe de construction d'une forêt aléatoire comme agrégation d'arbre aléatoires. En apprentissage automatique, les forêts d'arbres décisionnels (ou forêts aléatoires de l'anglais random forest classifier) forment une méthode d'apprentissage ensembliste. Ils ont été premièrement proposées par Ho en 1995 et ont été formellement proposées en 2001 par Leo Breiman et Adele Cutler. Cet algorithme combine les concepts de sous-espaces aléatoires et de bagging.
Building information modelingvignette|redresse=0.6|BIM : Building Information Modeling. BIM est le sigle anglais de Building Information Modeling, de Building Information Model, ou encore de Building Information Management, et le rétroacronyme de bâti immobilier modélisé. Il désigne les outils de modélisation des informations de la construction implémentés par des applications qui permettent la modélisation des données du bâtiment, d'une structure, d'un édifice ou d'un ouvrage.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).