Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Exploration spatialevignette|Les premiers pas d'humains sur la Lune : Buzz Aldrin photographié par Neil Armstrong sur la surface lunaire le pour la mission Apollo 11. L'exploration spatiale est l'ensemble des activités qui sont réalisées dans l'espace. Elles reposent sur des techniques spécifiques relevant de l'astronautique qui permettent la réalisation de lanceurs, de satellites, de sondes spatiales, d'équipements et d'instruments spécifiques. L'exploration de l'espace remplit des objectifs scientifiques, économiques, ou militaires.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Recuit simuléEn algorithmique, le recuit simulé est une méthode empirique (métaheuristique) d'optimisation, inspirée d'un processus, le recuit, utilisé en métallurgie. On alterne dans cette dernière des cycles de refroidissement lent et de réchauffage (recuit) qui ont pour effet de minimiser l'énergie du matériau. Cette méthode est transposée en optimisation pour trouver les extrema d'une fonction. Elle a été mise au point par trois chercheurs de la société IBM, S. Kirkpatrick, C.D. Gelatt et M.P. Vecchi en 1983, et indépendamment par V.
Vision for Space ExplorationNOTOC Le « Vision for Space Exploration » est le programme de politique spatiale américain annoncé par le président des États-Unis George W. Bush le à la suite de l'accident de la navette spatiale Columbia en 2003. Il redéfinit le programme spatial habité américain en intégrant la nécessité d'arrêter à court terme les vols de la navette spatiale américaine tout en fixant des objectifs ambitieux à la NASA : le retour sur la Lune pour préparer de futurs missions martiennes.
Soviet space programThe Soviet space program (Kosmicheskaya programma SSSR) was the national space program of the former Union of Soviet Socialist Republics (USSR), active from 1955 until the dissolution of the Soviet Union in 1991. Soviet investigations in rocketry began with the formation of a research laboratory in 1921, but these efforts were hampered by the devastating war with Germany.
Algorithme mémétiqueLes algorithmes mémétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode de résolution pour résoudre le problème de manière exacte en un temps raisonnable. Les algorithmes mémétiques sont nés d'une hybridation entre les algorithmes génétiques et les algorithmes de recherche locale. Ils utilisent le même processus de résolution que les algorithmes génétiques mais utilisent un opérateur de recherche locale après celui de mutation.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Méthode hill-climbingvignette|graphe de la méthode de hill-climbing La méthode hill-climbing ou méthode d' est une méthode d'optimisation permettant de trouver un optimum local parmi un ensemble de configurations. Le hill-climbing une méthode générale qui prend en entrée trois objets : une configuration, une fonction qui pour chaque configuration donne un ensemble de configurations voisines, et une fonction-objectif qui permet d'évaluer chaque configuration.
Optimisation multidisciplinaireL'Optimisation de Conception Multidisciplinaire (OMD ou MDO, Multidisciplinary Design Optimisation, en anglais) est un domaine d'ingénierie qui utilise des méthodes d'optimisation afin de résoudre des problèmes de conception mettant en œuvre plusieurs disciplines. La MDO permet aux concepteurs d'incorporer les effets de chacune des disciplines en même temps. L'optimum global ainsi trouvé est meilleur que la configuration trouvée en optimisant chaque discipline indépendamment des autres, car l'on prend en compte les interactions entre les disciplines.