Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).
Λ-ringIn algebra, a λ-ring or lambda ring is a commutative ring together with some operations λn on it that behave like the exterior powers of vector spaces. Many rings considered in K-theory carry a natural λ-ring structure. λ-rings also provide a powerful formalism for studying an action of the symmetric functions on the ring of polynomials, recovering and extending many classical results (). λ-rings were introduced by . For more about λ-rings see , , and .
Finitely generated moduleIn mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type. Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
Étale fundamental groupThe étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. In algebraic topology, the fundamental group of a pointed topological space is defined as the group of homotopy classes of loops based at . This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.
Pullback bundleIn mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle fE over B′. The fiber of fE over a point b′ in B′ is just the fiber of E over f(b′). Thus f*E is the disjoint union of all these fibers equipped with a suitable topology. Let π : E → B be a fiber bundle with abstract fiber F and let f : B′ → B be a continuous map.
Morphisme d'anneauxUn morphisme d'anneaux est une application entre deux anneaux (unitaires) A et B, compatible avec les lois de ces anneaux et qui envoie le neutre multiplicatif de A sur le neutre multiplicatif de B. Un morphisme d'anneaux est une application f entre deux anneaux (unitaires) A et B qui vérifie les trois propriétés suivantes : Pour tous a, b dans A : f(a + b) = f(a) + f(b) f(a ∙ b) = f(a) ∙ f(b) f(1A) = 1B.
Métrique pseudo-riemannienneEn mathématiques et en physique, une métrique pseudo-riemannienne est une extension de la métrique riemannienne dans laquelle un certain nombre d'axes de l'espace qu'elle décrit ont des normes négatives. Si la métrique pseudo-riemanienne est en réalité un champ tensoriel, et donc varie d'un point à un autre, sa signature (le nombre d'axes dont les normes sont positives et le nombre d'axes dont les normes sont négatives), elle, ne peut jamais changer pour un même espace. Variété pseudo-riemannienne Catégori
Calcul de SchubertEn mathématiques, et plus précisément en géométrie algébrique, le calcul de Schubert est une technique introduite à la fin du par Hermann Schubert pour résoudre des problèmes de dénombrement en géométrie projective. C'est un précurseur de plusieurs théories plus modernes, comme celle des classes caractéristiques, et ses aspects algorithmiques font toujours l'objet de recherches ; la systématisation et la justification de ce calcul est l'objet du quinzième problème de Hilbert.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Catenary ringIn mathematics, a commutative ring R is catenary if for any pair of prime ideals p, q, any two strictly increasing chains p = p0 ⊂ p1 ⊂ ... ⊂ pn = q of prime ideals are contained in maximal strictly increasing chains from p to q of the same (finite) length. In a geometric situation, in which the dimension of an algebraic variety attached to a prime ideal will decrease as the prime ideal becomes bigger, the length of such a chain n is usually the difference in dimensions.