Publication

A Dual Algorithm For L1-Regularized Reconstruction Of Vector Fields

Michaël Unser, Emrah Bostan, Pouya Dehghani Tafti
2012
Article de conférence
Résumé

Recent advances in vector-field imaging have brought to the forefront the need for efficient denoising and reconstruction algorithms that take the physical properties of vector fields into account and can be applied to large volumes of data. With these requirements in mind, we propose a computationally efficient algorithm for variational denoising and reconstruction of vector fields. Our variational objective combines rotation-and scale-invariant regularization functionals that permit one to tune the algorithm to the physical characteristics of the underlying phenomenon. In addition, these regularization terms involve L-1 norms in the spirit of total-variation (TV) regularization, which, as in the scalar case, leads to better preservation of discontinuities and superior SNR performance compared to its quadratic alternative. Some experimental results are provided to illustrate and verify the proposed scheme.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.