**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Variational Methods For Continuous-Domain Inverse Problems: the Quest for the Sparsest Solution

Résumé

The goal of this thesis is to study continuous-domain inverse problems for the reconstruction of sparse signals and to develop efficient algorithms to solve such problems computationally. The task is to recover a signal of interest as a continuous function from a finite number of measurements. This problem being severely ill-posed, we choose to favor sparse reconstructions. We achieve this by formulating an optimization problem with a regularization term involving the total-variation (TV) norm for measures. However, such problems often lead to nonunique solutions, some of which, contrary to expectations, may not be sparse. This requires particular care to assert that we reach a desired sparse solution.Our contributions are divided into three parts. In the first part, we propose exact discretization methods for large classes of TV-based problems with generic measurement operators for one-dimensional signals. Our methods are based on representer theorems that state that our problems have spline solutions. Our approach thus consists in performing an exact discretization of the problems in spline bases, and we propose algorithms which ensure that we reach a desired sparse solution. We then extend this approach to signals that are expressed as a sum of components with different characteristics. We either consider signals whose components are sparse in different bases or signals whose first component is sparse, and the other is smooth. In the second part, we consider more specific TV-based problems and focus on the identification of cases of uniqueness. Moreover, in cases of nonuniqueness, we provide a precise description of the solution set, and more specifically of the sparsest solutions. We then leverage this theoretical study to design efficient algorithms that reach such a solution. In this line, we consider the problem of interpolating one-dimensional data points with second-order TV regularization. We also study this same problem with an added Lipschitz constraint to favor stable solutions. Finally, we consider the problem of the recovery of periodic splines with low-frequency Fourier measurements, which we prove to always have a unique solution.In the third and final part, we apply our sparsity-based frameworks to various real-world problems. Our first application is a method for the fitting of sparse curves to contour data. Finally, we propose an image-reconstruction method for scanning transmission X-ray microscopy.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Publications associées (12)

Chargement

Chargement

Chargement

Concepts associés (12)

Résolution de problème

vignette|Résolution d'un problème mathématique.
La résolution de problème est le processus d'identification puis de mise en œuvre d'une solution à un problème.
Méthodologie
Dans l'ind

Régularisation (mathématiques)

vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L

Problème inverse

vignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ?
En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes

Acoustic tomography aims at recovering the unknown parameters that describe a field of interest by studying the physical characteristics of sound propagating through the considered field. The tomographic approach is appealing in that it is non-invasive and allows to obtain a significantly larger amount of data compared to the classical one-sensor one-measurement setup. It has, however, two major drawbacks which may limit its applicability in a practical setting: the methods by which the tomographic data are acquired and then converted to the field values are computationally intensive and often ill-conditioned. This thesis specifically addresses these two shortcomings by proposing novel acoustic tomography algorithms for signal acquisition and field reconstruction. The first part of our exposition deals with some theoretical aspects of the tomographic sampling problems and associated reconstruction schemes for scalar and vector tomography. We show that the classical time-of-flight measurements are not sufficient for full vector field reconstruction. As a solution, an additional set of measurements is proposed. The main advantage of the proposed set is that it can be directly computed from acoustic measurements. It thus avoids the need for extra measuring devices. We then describe three novel reconstruction methods that are conceptually quite different. The first one is based on quadratic optimization and does not require any a priori information. The second method builds upon the notion of sparsity in order to increase the reconstruction accuracy when little data is available. The third approach views tomographic reconstruction as a parametric estimation problem and solves it using recent sampling results on non-bandlimited signals. The proposed methods are compared and their respective advantages are outlined. The second part of our work is dedicated to the application of the proposed algorithms to three practical problems: breast cancer detection, thermal therapy monitoring, and temperature monitoring in the atmosphere. We address the problem of breast cancer detection by computing a map of sound speed in breast tissue. A noteworthy contribution of this thesis is the development of a signal processing technique that significantly reduces the artifacts that arise in very inhomogeneous and absorbent tissue. Temperature monitoring during thermal therapies is then considered. We show how some of our algorithms allow for an increased spatial resolution and propose ways to reduce the computational complexity. Finally, we demonstrate the feasibility of tomographic temperature monitoring in the atmosphere using a custom-built laboratory-scale experiment. In particular, we discuss various practical aspects of time-of-flight measurement using cheap, off-the-shelf sensing devices.

Digital photography exists since 1975, when Steven Sasson attempted to build the first digital camera. Since then the concept of digital camera did not evolve much: an optical lens concentrates light rays onto a focal plane where a planar photosensitive array transforms the light intensity into an electric signal. During the last decade a new way of conceiving digital photography emerged: a photography is the acquisition of the entire light ray field in a confined region of space. The main implication of this new concept is that a digital camera does not acquire a 2-D signal anymore, but a 5-D signal in general. Acquiring an image becomes more demanding in terms of memory and processing power; at the same time, it offers the users a new set of possibilities, like choosing dynamically the focal plane and the depth of field of the final digital photo. In this thesis we develop a complete mathematical framework to acquire and then reconstruct the omnidirectional light field around an observer. We also propose the design of a digital light field camera system, which is composed by several pinhole cameras distributed around a sphere. The choice is not casual, as we take inspiration from something already seen in nature: the compound eyes of common terrestrial and flying insects like the house fly. In the first part of the thesis we analyze the optimal sampling conditions that permit an efficient discrete representation of the continuous light field. In other words, we will give an answer to the question: how many cameras and what resolution are needed to have a good representation of the 4-D light field? Since we are dealing with an omnidirectional light field we use a spherical parametrization. The results of our analysis is that we need an irregular (i.e., not rectangular) sampling scheme to represent efficiently the light field. Then, to store the samples we use a graph structure, where each node represents a light ray and the edges encode the topology of the light field. When compared to other existing approaches our scheme has the favorable property of having a number of samples that scales smoothly for a given output resolution. The next step after the acquisition of the light field is to reconstruct a digital picture, which can be seen as a 2-D slice of the 4-D acquired light field. We interpret the reconstruction as a regularized inverse problem defined on the light field graph and obtain a solution based on a diffusion process. The proposed scheme has three main advantages when compared to the classic linear interpolation: it is robust to noise, it is computationally efficient and can be implemented in a distributed fashion. In the second part of the thesis we investigate the problem of extracting geometric information about the scene in the form of a depth map. We show that the depth information is encoded inside the light field derivatives and set up a TV-regularized inverse problem, which efficiently calculates a dense depth map of the scene while respecting the discontinuities at the boundaries of objects. The extracted depth map is used to remove visual and geometrical artifacts from the reconstruction when the light field is under-sampled. In other words, it can be used to help the reconstruction process in challenging situations. Furthermore, when the light field camera is moving temporally, we show how the depth map can be used to estimate the motion parameters between two consecutive acquisitions with a simple and effective algorithm, which does not require the computation nor the matching of features and performs only simple arithmetic operations directly in the pixel space. In the last part of the thesis, we introduce a novel omnidirectional light field camera that we call Panoptic. We obtain it by layering miniature CMOS imagers onto an hemispherical surface, which are then connected to a network of FPGAs. We show that the proposed mathematical framework is well suited to be embedded in hardware by demonstrating a real time reconstruction of an omnidirectional video stream at 25 frames per second.

Vision sensor networks and video cameras find widespread usage in several applications that rely on effective representation of scenes or analysis of 3D information. These systems usually acquire multiple images of the same 3D scene from different viewpoints or at different time instants. Therefore, these images are generally correlated through displacement of scene objects. Efficient compression techniques have to exploit this correlation in order to efficiently communicate the 3D scene information. Instead of joint encoding that requires communication between the cameras, in this thesis we concentrate on distributed representation, where the captured images are encoded independently, but decoded jointly to exploit the correlation between images. One of the most important and challenging tasks relies in estimation of the underlying correlation from the compressed correlated images for effective reconstruction or analysis in the joint decoder. This thesis focuses on developing efficient correlation estimation algorithms and joint representation of multiple correlated images captured by various sensing methodologies, e.g., planar, omnidirectional and compressive sensing (CS) sensors. The geometry of the 2D visual representation and the acquisition complexity vary for each sensor type. Therefore, we need to carefully consider the specific geometric nature of the captured images while developing distributed representation algorithms. In this thesis we propose robust algorithms in different scene analysis and reconstruction scenarios. We first concentrate on the distributed representation of omnidirectional images captured by catadioptric sensors. The omnidirectional images are captured from different viewpoints and encoded independently with a balanced rate distribution among the different cameras. They are mapped on the sphere which captures the plenoptic function in its radial form without Euclidean discrepancies. We propose a transform-based distributed coding algorithm, where the spherical images initially undergo a multi-resolution decomposition. The visual information is then split into two correlated partitions. The encoder transmits one partition after entropy coding, as well as the syndrome bits resulting from the Slepian-Wolf encoding of the other partition. The joint decoder estimates a disparity image to take benefit of the correlation between views and uses the syndrome bits to decode the missing information. Such a strategy proves to be beneficial with respect to the independent processing of images and shows only a small performance loss compared to the joint encoding of different views. The encoding complexity in the previous approach is non-negligible due to the visual information processing based on Slepian-Wolf coding and its associated rate parameter estimation. We therefore discard the Slepian-Wolf encoding and propose a distributed coding solution, where the correlated images are encoded independently using transform-based coding solutions (e.g., SPIHT). The central decoder now builds a correlation model from the compressed images, which is used to jointly decode a pair of images. Experimental results demonstrate that the proposed distributed coding solution improves the rate-distortion performance of the separate coding results for both planar and omnidirectional images. However, this improvement is significant only at medium to high bit rates. We therefore propose a rate allocation scheme that identifies and transmits the necessary visual information from each image to improve the correlation estimation accuracy at low bit rate. Experimental results show that for a given bit budget the proposed encoding scheme permits to compute an accurate correlation estimation comparing to the one obtained with SPIHT, JPEG 2000 or JPEG coding schemes. We show however that the improvement in the correlation estimation comes at the price of penalizing the image reconstruction quality; therefore there exists an interesting trade-off between the accurate correlation estimation and image reconstruction as encoding optimization objectives are different in both cases. Next, we further simplify the encoding complexity by replacing the classical imaging sensors with the simple CS sensors, that directly acquire the compressed images in the form of quantized linear measurements. We now concentrate on the particular problem, where one image is selected as the reference and it is used as a side information for the correlation estimation. We propose a geometry-based model to describe the correlation between the visual information in a pair of images. The joint decoder first captures the most prominent visual features in the reconstructed reference image using geometric functions. Since the images are correlated, these features are likely to be present in the other images too, possibly with geometric transformations. Hence, we propose to estimate the correlation model with a regularized optimization problem that locates these features in the compressed images. The regularization terms enforce smoothness of the transformation field, and consistency between the estimated images and the quantized measurements. Experimental results show that the proposed scheme is able to efficiently estimate the correlation between images for several multi-view and video datasets. The proposed scheme is finally shown to outperform DSC schemes based on unsupervised disparity (or motion) learning, as well as independent coding solutions based on JPEG 2000. We then extend the previous scenario to a symmetric decoding problem, where we are interested to estimate the correlation model directly from the quantized linear measurements without explicitly reconstructing the reference images. We first show that the motion field that represents the main source of correlation between images can be described as a linear operator. We further derive a linear relationship between the correlated measurements in the compressed domain. We then derive a regularized cost function to estimate the correlation model directly in the compressed domain using graph-based optimization algorithms. Experimental results show that the proposed scheme estimates an accurate correlation model among images in both multi-view and video imaging scenarios. We then propose a robust data fidelity term that improves the quality of the correlation estimation when the measurements are quantized. Finally, we show by experiments that the proposed compressed correlation estimation scheme is able to compete the solution of a scheme that estimates a correlation model from the reconstructed images without the complexity of image reconstruction. Finally, we study the benefit of using the correlation information while jointly reconstructing the images from the compressed linear measurements. We consider both the asymmetric and symmetric scenarios described previously. We propose joint reconstruction methodologies based on a constrained optimization problem which is solved using effective proximal splitting methods. The constraints included in our framework enforce the reconstructed images to satisfy both the correlation and the quantized measurements consistency objectives. Experimental results demonstrate that the proposed joint reconstruction scheme improves the quality of the decoded images, when compared to a scheme where the images are handled independently. In this thesis we build efficient distributed scene representation algorithms for the multiple correlated images captured in planar, omnidirectional and CS cameras. The coding rate in our symmetric distributed coding solution stays balanced between the encoders and stays close to the joint encoding solutions. Our novel algorithms lead to effective correlation estimation in different sensing and coding scenarios. In addition, we provide innovative solutions for robust correlation estimation from highly compressed images in simple sensing frameworks. Our CS-based joint reconstruction frameworks effectively exploit the inter-view correlation, that permits to achieve high compression gains compared to state-of-the-art independent and distributed coding solutions.