-Hyperspectral Image Compressed Sensing Via Low-Rank And Joint-Sparse Matrix Recovery
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Reconstruction algorithms for fluorescence tomography have to address two crucial issues : 1) the ill-posedness of the reconstruction problem, 2) the large scale of numerical problems arising from imaging of 3-D samples. Our contribution is the design and ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
Consider a scenario where a distributed signal is sparse and is acquired by various sensors that see different versions. Thus, we have a set of sparse signals with both some common parts, and some variations. The question is how to acquire such signals and ...
We present a numerical framework for Fluorescence Diffuse Optical Tomography (fDOT) that combines a forward model together with an iterative reconstruction procedure. Using rapid linear solvers, we derived an efficient reconstruction strategy for quadrati ...
The theory of Compressed Sensing (CS) is based on reconstructing sparse signals from random linear measurements. As measurement of continuous signals by digital devices always involves some form of quantization, in practice devices based on CS encoding mus ...
Recent results in compressed sensing or compressive sampling suggest that a relatively small set of measurements taken as the inner product with universal random measurement vectors can well represent a source that is sparse in some fixed basis. By adaptin ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2007
We present a numerical framework for Fluorescence Diffuse Optical Tomography (fDOT) that combines a forward model together with an iterative reconstruction procedure. Using rapid linear solvers, we derived an efficient reconstruction strategy for quadratic ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2009