Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic learning rules for spiki ...
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning r ...
Humans and animals learn by modifying the synaptic strength between neurons, a phenomenon known as synaptic plasticity. These changes can be induced by rather short stimuli (lasting, for instance, only a few seconds), yet, in order to be useful for long-te ...
In this paper we describe a new computational model of switching between path-planning and cue-guided navigation strategies. It is based on three main assumptions: (i) the strategies are mediated by separate memory systems that learn independently and in p ...
Acute stress regulates different aspects of behavioral learning through the action of stress hormones and neuromodulators. Stress effects depend on stressor's type, intensity, timing, and the learning paradigm. In addition, genetic background of animals mi ...
EPFL2009
Reinforcement learning algorithms have been successfully applied in robotics to learn how to solve tasks based on reward signals obtained during task execution. These reward signals are usually modeled by the programmer or provided by supervision. However, ...
2010
,
Reinforcement learning in neural networks requires a mechanism for exploring new network states in response to a single, nonspecific reward signal. Existing models have introduced synaptic or neuronal noise to drive this exploration. However, those types o ...
Suppose we train an animal in a conditioning experiment. Can one predict how a given animal, under given experimental conditions, would perform the task? Since various factors such as stress, motivation, genetic background, and previous errors in task perf ...
We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algo ...
Synaptic plasticity is considered to be the biological substrate of learning and memory. In this document we review phenomenological models of short-term and long-term synaptic plasticity, in particular spike-timing dependent plasticity (STDP). The aim of ...