Incremental Model Identification of Gas-Liquid Reaction Systems with Unsteady-State Diffusion
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The Dirichlet-Neumann (DN) method has been extensively studied for linear partial differential equations, while little attention has been devoted to the nonlinear case. In this paper, we analyze the DN method both as a nonlinear iterative method and as a p ...
In this thesis we explore uncertainty quantification of forward and inverse problems involving differential equations. Differential equations are widely employed for modeling natural and social phenomena, with applications in engineering, chemistry, meteor ...
The diffusion limit of kinetic systems has been subject of numerous studies since prominent works of Lebowitz et al. [1] and van Kampen [2]. More recently, the topic has seen a fresh interest from the rarefied gas simulation perspective. In particular, Fok ...
To elucidate the sources and chemical reaction pathways of organic vapors and particulate matter in the ambient atmosphere, real-time detection of both the gas and particle phase is needed. State-of-the-art techniques often suffer from thermal decompositio ...
In the nanoscale regime, flow behaviors for liquids show qualitative deviations from bulk expectations. In this work, we reveal by molecular dynamics simulations that plug flow down to nanoscale induces molecular friction that leads to a new flow structure ...
This article proposes a dynamical system modeling approach for the analysis of longitudinal data of self-regulated homeostatic systems experiencing multiple excitations. It focuses on the evolution of a signal (e.g., heart rate) before, during, and after e ...
Hydrodynamic phenomena can be leveraged to confine a range of biological and chemical species without needing physical walls. In this review, we list methods for the generation and manipulation of microfluidic hydrodynamic confinements in free-flowing liqu ...
We investigate experimentally and theoretically diffusiophoretic separation of negatively charged particles in a rectangular channel flow, driven by CO2 dissolution from one side-wall. Since the negatively charged particles create an exclusion zone near th ...
Consider the surface quasi-geostrophic equation with random diffusion, white in time. We show global existence and uniqueness in high probability for the associated Cauchy problem satisfying a Gevrey type bound. This article is inspired by a recent work of ...
Trimming is a common operation in computer aided design and, in its simplest formulation, consists in removing superfluous parts from a geometric entity described via splines (a spline patch). After trimming, the geometric description of the patch remains ...