Théorie des trois phases du traficLa théorie des trois phases du trafic est une théorie alternative de la modélisation du trafic routier mise au point par Boris Kerner entre 1996 et 2002. Elle se concentre principalement sur l'explication physique de la dégradation des conditions de trafic et des embouteillages résultant sur les autoroutes. À la différence des théories classiques basées sur le diagramme fondamental du trafic qui distinguent deux phases ou régimes (trafic fluide et les congestions), la théorie de Kerner propose trois phases.
Phénomène de transfertUn phénomène de transfert (ou phénomène de transport) est un phénomène irréversible durant lequel une grandeur physique est transportée par le biais de molécules. C'est un phénomène transversal présent dans tous les domaines de la science et en ingénierie. Tous les phénomènes de transport ont pour origine l'inhomogénéité d'une grandeur intensive. C'est la tendance spontanée des systèmes physiques et chimiques à rendre uniformes ces grandeurs qui provoquent le transport.
Coherent sheafIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.
Coherent sheaf cohomologyIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.