Models of Reward-Modulated Spike-Timing-Dependent Plasticity
Publications associées (157)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algo ...
Environments with varying reward contingencies constitute a challenge to many living creatures. In such conditions, animals capable of adaptation and learning derive an advantage. Recent studies suggest that neuromodulatory dynamics are a key factor in reg ...
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
Slow Feature Analysis (SFA) is an efficient algorithm for learning input-output functions that extract the most slowly varying features from a quickly varying signal. It has been successfully applied to the unsupervised learning of translation-, rotation-, ...
This article analyzes the simple Rescorla-Wagner learning rule from the vantage point of least squares learning theory. In particular, it suggests how measures of risk, such as prediction risk, can be used to adjust the learning constant in reinforcement l ...
Stress and genetic background regulate different aspects of behavioral learning through the action of stress hormones and neuromodulators. In reinforcement learning (RL) models, meta-parameters such as learning rate, future reward discount factor, and expl ...
Children seem to acquire new know-how in a continuous and open-ended manner. In this paper, we hypothesize that an intrinsic motivation to progress in learning is at the origins of the remarkable structure of children’s developmental trajectories. In this ...
We propose a novel network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on biological observations of synaptic plasticity. The model is furt ...
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...