Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The transverse piezoelectric coefficient e31,f of Al1-xScxN thin films was investigated as a function of composition. It increased nearly 50% from x = 0 to x = 0.17. As the increase of the dielectric constant was only moderate, these films are very suitable for energy harvesting, giving a 60% higher transformation yield (x = 0.17) as compared to pure AlN. A higher doping might even lead to a 100% augmentation. The thickness strain response (d33,f) was found to increase proportionally to the ionic part of the dielectric constant. The e-type coefficients (stress response), however, did not augment so much as the structure becomes softer. As a result, the transverse voltage/strain response (h31,f-coefficient) was raised only slightly with Sc doping. The low dielectric loss obtained at all compositions suggests also the use of Al1xScxN thin films in sensors.
Holger Frauenrath, Yauhen Sheima