Loi log-normaleEn théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Fonction anonymeEn programmation informatique, une fonction anonyme, aussi appelée lambda expression ou fonction lambda est une fonction n'ayant pas de nom. Les fonctions anonymes existent dans certains langages de programmation comme Python, JavaScript, OCaml ou C++. Certains langages, comme le C et Pascal (tout au moins les versions standards de ces langages), ne permettent pas d'écrire des fonctions anonymes. Parce que ces fonctions n'ont pas de nom, à l'endroit où l'on voudrait mettre leur nom, on trouve directement les instructions définissant la fonction introduites par une syntaxe particulière.
Orthogonal frequency-division multiplexingL’OFDM (orthogonal frequency-division multiplexing) est un procédé de codage de signaux numériques par répartition en fréquences orthogonales sous forme de multiples sous-porteuses. Cette technique permet de lutter contre les canaux sélectifs en fréquence en permettant une égalisation de faible complexité. Ces canaux se manifestent notamment en présence de trajets multiples et sont d'autant plus pénalisants que le débit de transmission est élevé.
Linear network codingIn computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations. Linear network coding may be used to improve a network's throughput, efficiency, and scalability, as well as reducing attacks and eavesdropping. The nodes of a network take several packets and combine for transmission. This process may be used to attain the maximum possible information flow in a network.
Logique probabilisteProbabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory.
Modèle graphiqueUn modèle graphique est une représentation d'objets probabilistes. C'est un graphe qui représente les dépendances de variables aléatoires. Ces modèles sont notamment utilisés en apprentissage automatique. Un modèle graphique est un graphe orienté ou non orienté, c'est-à-dire un ensemble, les « sommets », et des liens entre les sommets, les « arêtes ». Chaque sommet représente une variable aléatoire et chaque arête représente une dépendance de ces variables. Dans l'exemple ci-contre, il y a 4 variables aléatoires A, B, C et D.
Programmation concurrenteLa programmation concurrente est un paradigme de programmation tenant compte, dans un programme, de l'existence de plusieurs piles sémantiques qui peuvent être appelées threads, processus ou tâches. Elles sont matérialisées en machine par une pile d'exécution et un ensemble de données privées. La concurrence est indispensable lorsque l'on souhaite écrire des programmes interagissant avec le monde réel (qui est concurrent) ou tirant parti de multiples unités centrales (couplées, comme dans un système multiprocesseurs, ou distribuées, éventuellement en grille ou en grappe).
Redondance (théorie de l'information)En théorie de l’information, la redondance correspond au nombre de bits nécessaires pour transmettre un message auquel on soustrait le nombre de bits correspondant aux informations réellement contenues dans ce même message. Officieusement, la redondance correspond à l’« espace » utilisé mais non occupé pour transmettre certaines données. La compression de données permet de réduire ou d’éliminer la redondance que l’utilisateur ne désire pas conserver, alors que les sommes de contrôle permettent d’ajouter une redondance souhaitée pour les besoins du code correcteur lorsque l’utilisateur communique sur un canal bruyant à capacité limitée.
Apprentissage auto-superviséL'apprentissage auto-supervisé ("self-supervised learning" en anglais) (SSL) est une méthode d'apprentissage automatique. Il apprend à partir d'échantillons de données non étiquetés. Il peut être considéré comme une forme intermédiaire entre l'apprentissage supervisé et non supervisé. Il est basé sur un réseau de neurones artificiels. Le réseau de neurones apprend en deux étapes. Tout d'abord, la tâche est résolue sur la base de pseudo-étiquettes qui aident à initialiser les poids du réseau.