Méthode des moindres carrésLa méthode des moindres carrés, indépendamment élaborée par Legendre et Gauss au début du , permet de comparer des données expérimentales, généralement entachées d’erreurs de mesure, à un modèle mathématique censé décrire ces données. Ce modèle peut prendre diverses formes. Il peut s’agir de lois de conservation que les quantités mesurées doivent respecter. La méthode des moindres carrés permet alors de minimiser l’impact des erreurs expérimentales en « ajoutant de l’information » dans le processus de mesure.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Residual sum of squaresIn statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear regression. A small RSS indicates a tight fit of the model to the data. It is used as an optimality criterion in parameter selection and model selection.
Mean percentage errorIn statistics, the mean percentage error (MPE) is the computed average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast. The formula for the mean percentage error is: where at is the actual value of the quantity being forecast, ft is the forecast, and n is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result the formula can be used as a measure of the bias in the forecasts.
Erreur d'approximationvignette|Approximation de la fonction exponentielle par une fonction affine. En analyse numérique, une branche des mathématiques, l'erreur d'approximation de certaines données est la différence entre une valeur exacte et une certaine valeur approchée ou approximation de celle-ci. Une erreur d'approximation peut se produire lorsque la mesure des données n'est pas précise (en raison des instruments) ; ou lors de l'emploi de valeurs approchées au lieu des valeurs exactes (par exemple, 3,14 au lieu de π).
Débit (physique)Le débit est la quantité d'une grandeur qui traverse une surface donnée par unité de temps. Il permet de quantifier un déplacement de matière ou d'énergie. Le terme débit est le plus souvent associé au débit volumique : il quantifie alors le volume qui traverse une surface, une section, par unité de temps. Le débit massique caractérise la masse qui traverse la surface par unité de temps. Il s'agit de notions centrales dans une situation d'écoulement de fluide.
Discounted cash flowThe discounted cash flow (DCF) analysis, in finance, is a method used to value a security, project, company, or asset, that incorporates the time value of money. Discounted cash flow analysis is widely used in investment finance, real estate development, corporate financial management, and patent valuation. Used in industry as early as the 1700s or 1800s, it was widely discussed in financial economics in the 1960s, and U.S. courts began employing the concept in the 1980s and 1990s.
Valeur absolue des écartsEn statistique, la déviation absolue moyenne (ou simplement déviation moyenne) d'un ensemble est la moyenne (ou valeur prévue) des déviations absolues par rapport à un point central d'une série statistique. C'est une statistique sommaire de dispersion ou de variabilité statistique, et elle peut être associée à toute mesure à une tendance centrale (moyenne, médiane, mode...). La déviation absolue d'un élément a d'un ensemble de données x par rapport à un réel est a – x.
État de surface (mécanique)En mécanique, l'état de surface est un élément de cotation d'une pièce indiquant la fonction, la rugosité, et l'aspect des surfaces usinées. En Spécification Géométrique des Produits (GPS), on distingue seize fonctions principales que peut remplir la surface d'une pièce mécanique : Surface de contact avec une autre pièce : frottement de glissement lubrifié (FG) ; frottement à sec (FS) ; frottement de roulement (FR) ; frottement fluide (FF) ; résistance au matage (RM) ; étanchéité dynamique avec ou sans joint (ED) ; étanchéité statique avec ou sans joint (ES) ; ajustement fixe avec contrainte (AC) ; adhérence, collage (AD).
Mesure de RadonIn mathematics (specifically in measure theory), a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.