Electricity Load Forecasting for Residential Customers: Exploiting Aggregation and Correlation between Households
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
During the COVID-19 pandemic, forecasting COVID-19 trends to support planning and response was a priority for scientists and decision makers alike. In the United States, COVID-19 forecasting was coordinated by a large group of universities, companies, and ...
Machine learning techniques have been extensively developed in the field of electricity theft detection. However, almost all typical models primarily rely on electricity consumption data to identify fraudulent users, often neglecting other pertinent househ ...
Throughout history, the pace of knowledge and information sharing has evolved into an unthinkable speed and media. At the end of the XVII century, in Europe, the ideas that would shape the "Age of Enlightenment" were slowly being developed in coffeehouses, ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
Accurate forecasting of photovoltaic (PV) power production is crucial for the integration of more renewable energy sources into the power grid. PV power production is highly intermittent, due to the stochastic cloud behaviour and cloud dynamics. Previous w ...
Motion forecasting is crucial in enabling autonomous vehicles to anticipate the future trajectories of surrounding agents. To do so, it requires solving mapping, detection, tracking, and then forecasting problems, in a multi-step pipeline. In this complex ...
With the significant increase in photovoltaic (PV) electricity generation, more attention has been given to PV power forecasting. Indeed, accurate forecasting allows power grid operators to better schedule and dispatch their assets, such as energy storage ...
Deep learning has revolutionized the field of computer vision, a success largely attributable to the growing size of models, datasets, and computational power.Simultaneously, a critical pain point arises as several computer vision applications are deployed ...
Situational awareness strategies are essential for the reliable and secure operation of the electric power grid which represents critical infrastructure in modern society. With the rise of converter-interfaced renewable generation and the consequent shift ...
This research studies the influence of high-peak loads on local relaxation of residual stress and fatigue damage in highstrength steel welded joints treated by high-frequency mechanical impact (HFMI) treatment. The joint behavior is simulated with elastic– ...