Publication

Its not that I dont care, I just dont care very much: confounding between attribute non-attendance and taste heterogeneity

Résumé

With the growing interest in the topic of attribute non-attendance, there is now widespread use of latent class (LC) structures aimed at capturing such behaviour, across a number of different fields. Specifically, these studies rely on a confirmatory LC model, using two separate values for each coefficient, one of which is fixed to zero while the other is estimated, and then use the obtained class probabilities as an indication of the degree of attribute non-attendance. In the present paper, we argue that this approach is in fact misguided, and that the results are likely to be affected by confounding with regular taste heterogeneity. We contrast the confirmatory model with an exploratory LC structure in which the values in both classes are estimated. We also put forward a combined latent class mixed logit model (LC-MMNL) which allows jointly for attribute non-attendance and for continuous taste heterogeneity. Across three separate case studies, the exploratory LC model clearly rejects the confirmatory LC approach and suggests that rates of non-attendance may be much lower than what is suggested by the standard model, or even zero. The combined LC-MMNL model similarly produces significant improvements in model fit, along with substantial reductions in the implied rate of attribute non-attendance, in some cases even eliminating the phenomena across the sample population. Our results thus call for a reappraisal of the large body of recent work that has implied high rates of attribute non-attendance for some attributes. Finally, we also highlight a number of general issues with attribute non-attendance, in particular relating to the computation of willingness to pay measures.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (49)
Grade universitaire
Un grade universitaire est un degré dans la hiérarchie des études supérieures. Il est attesté par un diplôme délivré par les universités et autres institutions d’études supérieures. Les grades sont conférés aux titulaires de diplômes de l'enseignement supérieur délivrés par les universités et les établissements habilités. Les grades peuvent être également conférés aux titulaires de certains diplômes propres à des établissements. À ces grades peuvent être associés un certain nombre de droits et de privilèges, pouvant varier suivant les disciplines et les finalités.
Implied volatility
In financial mathematics, the implied volatility (IV) of an option contract is that value of the volatility of the underlying instrument which, when input in an option pricing model (such as Black–Scholes), will return a theoretical value equal to the current market price of said option. A non-option financial instrument that has embedded optionality, such as an interest rate cap, can also have an implied volatility. Implied volatility, a forward-looking and subjective measure, differs from historical volatility because the latter is calculated from known past returns of a security.
Associate degree
L'Associate Degree, Associate's Degree (traduit comme « Diplôme d'associé »), Associate diploma ou Grade d'associé au Canada est un diplôme américain, canadien, australien ou néerlandais attribué aux étudiants qui ont validé avec succès un cursus d'études supérieures d'une durée de deux ans. Il est accordé par certains colleges ou collèges communautaires (community colleges) et par certaines universités.
Afficher plus
Publications associées (65)

How to detect and reduce potential sources of biases in studies of SARS-CoV-2 and COVID-19

Mats Julius Stensrud

In response to the coronavirus disease (COVID-19) pandemic, public health scientists have produced a large and rapidly expanding body of literature that aims to answer critical questions, such as the proportion of the population in a geographic area that h ...
2021

Revisiting Multivariate Ring Learning with Errors and Its Applications on Lattice-Based Cryptography

Juan Ramón Troncoso-Pastoriza

The “Multivariate Ring Learning with Errors” problem was presented as a generalization of Ring Learning with Errors (RLWE), introducing efficiency improvements with respect to the RLWE counterpart thanks to its multivariate structure. Nevertheless, the rec ...
2021

A numerical study on the coupled hydro-mechanical behaviour of compacted bentonite

Lyesse Laloui, Alessio Ferrari, Jose Antonio Bosch Llufriu

Understanding the mechanical behaviour of compacted bentonite upon re-saturation is of outmost importance in most designs of nuclear waste disposal repositories. The behaviour of bentonite is characterized by its stress-path dependency and it is typically ...
EDP SCIENCES2020
Afficher plus
MOOCs associés (12)
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.