Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Reconfigurable parallel computing is required to provide high-performance embedded computing, hide hardware complexity, boost software development, and manage multiple workloads when multiple applications are running simultaneously on the emerging network-on-chip (NoC)-based multiprocessor systems-on-chip (MPSoCs) platforms. In these type of systems, the overall system performance may be affected due to congestion, and therefore parallel programming stacks must be assisted by quality-of-service (QoS) support to meet application requirements and to deal with application dynamism. In this paper, we present a hardware-software QoS-driven reconfigurable parallel computing framework, i.e., the NoC services, the runtime QoS middleware API and our ocMPI library and its tracing support which has been tailored for a distributed-shared memory ARM clustered NoC-based MPSoC platform. The experimental results show the efficiency of our software stack under a broad range of parallel kernels and benchmarks, in terms of low-latency interprocess communication, good application scalability, and most important, they demonstrate the ability to enable runtime reconfiguration to manage workloads in message-passing parallel applications.
David Atienza Alonso, Giovanni Ansaloni, José Angel Miranda Calero, Rubén Rodríguez Álvarez, Juan Pablo Sapriza Araujo, Benoît Walter Denkinger, Ruben Rodriguez