Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Synergy in the downstream signaling pathways of the vascular endothelial growth factor receptor-2 (VEGFR-2) and the integrin alpha v beta 3 is critical for blood vessel formation. Thus, agents that activate both receptors could possess efficient pro-angiogenic potential. Here, we created a fibrin-binding bi-functional protein (FNIII10-VEGF) consisting of the 10th type III domain of fibronectin (FNIII10) fused to a plasmin-resistant VEGF-A(165) mutant (VEGF) that potentiated angiogenic processes when compared to the effect of the separate molecules. FNIII10-VEGF was able to bind both VEGFR-2 and integrin alpha v beta 3. Intriguingly, cell attachment and spreading to immobilized FNIII10-VEGF was significantly enhanced compared to individual FNIII10 or VEGF proteins. Delivery of immobilized FNIII10-VEGF by covalent linkage to a fibrin matrix significantly enhanced the angiogenic response in an in vivo wound healing assay compared to soluble VEGF. Unexpectedly, the angiogenic response to fibrin-immobilized FNIII10-VEGF was reduced in comparison to the pro-angiogenic effect of fibrin-immobilized VEGF. Collectively, findings of this study corroborate a critical role for a subtle balance of the integrin-VEGF interplay in angiogenesis and provide insight in how engineered growth factors in concert with biomaterial matrices may offer a potent molecular/material approach to harness these interactions for therapeutic angiogenesis. (C) 2013 Elsevier Ltd. All rights reserved.
Georges Wagnières, Jaroslava Joniová, Séverine Marguerite Urfer
Matthias Lütolf, Jeffrey Alan Hubbell, Yoji Tabata, Jun Ishihara, Kazuto Fukunaga
Nikolaos Stergiopulos, Augusto Martins Lima