The gradient distribution of Ni ions in cation-disordered Li[Ni1/2Mn3/2]O-4 clarified by muon-spin rotation and relaxation (mu SR)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This paper focuses on the prediction of temperature profiles on the surface of Lithium-ion cells. In particular, the paper proposes the adoption of the impulse response technique to predict cell surface temperatures consequent to generic discharge conditio ...
Replacing the liq. electrolyte in lithium batteries by a solid has been a long-standing goal of the battery industry due to the promise of better safety and the potential to produce batteries with higher energy densities. Recently, sym. polystyrene-block-p ...
LiBH4 has been discussed as a promising hydrogen storage material and as a solid-state electrolyte in lithiumion batteries. It contains 18.5 wt% hydrogen and undergoes a structural phase transition at 381K which is associated with a large increase in rotat ...
Some fundamental challenges are shaping the world we live in, and the need for alternative materials and energies is one of the most prominent issues of this century, especially in the light of global warming and energy need. Another crucial point concerns ...
Within the context of the electrical circuit modeling of batteries, this paper proposes an improvement of the most common electric equivalent circuit used for Lithium cells. The main improvement is based on the modeling of the so-called charge redistributi ...
The poor electronic conductivity of LiFePO4 has been one of the major issues impeding it from achieving high power and energy density lithium-ion batteries. In this communication, a novel polymer-wiring concept was proposed to improve the conduction of the ...
There is considerable interest in developing solid electrolytes for rechargeable lithium batteries as they have the potential to increase both energy d. due to incorporation of a lithium metal anode and safety of batteries due to the fact that they are non ...
We review herein several important aspects of surface chemistry in Li-ion batteries, and discuss the use of ionic liquids (ILs) for rechargeable Li batteries. We explored the suitability of ILs for 5 V cathodes and Li-graphite anodes. Some advantages of th ...
Reversible chemical delithiation/lithiation of LiFePO4 was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system - the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility ...
LiMnPO4 nanoparticles synthesized by the polyol method were examined as a cathode material for advanced Li-ion batteries. The structure, surface morphology, and performance were characterized by X-ray diffraction, high resolution scanning electron microsco ...