Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Compressed sensing (CS) is a universal low-complexity data compression technique for signals that have a sparse representation in some domain. While CS data compression can be done both in the analog- and digital domain, digital implementations are often used on low-power sensor nodes, where an ultra-low-power (ULP) processor carries out the algorithm on Nyquist-rate sampled data. In such systems an energy-efficient implementation of the CS compression kernel is a vital ingredient to maximize battery lifetime. In this paper, we propose an application-specific instruction-set processor (ASIP) processor that has been optimized for CS data compression and for operation in the subthreshold (sub-VT) regime. The design is equipped with specific sub-VT capable standard-cell based memories, to enable low-voltage operation with low leakage. Our results show that the proposed ASIP accomplishes 62× speed-up and 11.6× power savings with respect to a straightforward CS implementation running on the baseline low-power processor without instruction set extensions.
Aurélien François Gilbert Bloch
Ali H. Sayed, Emre Telatar, Mert Kayaalp, Yunus Inan