Concept# Central processing unit

Résumé

A central processing unit (CPU)—also called a central processor or main processor—is the most important processor in a given computer. Its electronic circuitry executes instructions of a computer program, such as arithmetic, logic, controlling, and input/output (I/O) operations. This role contrasts with that of external components, such as main memory and I/O circuitry, and specialized coprocessors such as graphics processing units (GPUs).
The form, design, and implementation of CPUs have changed over time, but their fundamental operation remains almost unchanged. Principal components of a CPU include the arithmetic–logic unit (ALU) that performs arithmetic and logic operations, processor registers that supply operands to the ALU and store the results of ALU operations, and a control unit that orchestrates the fetching (from memory), decoding and execution (of instructions) by directing the coordinated operations of the ALU, registers, and other components.
Most modern CPUs are imp

Source officielle

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement

Publications associées (100)

Chargement

Chargement

Chargement

Personnes associées (50)

Concepts associés (304)

Intel

Intel Corporation est une entreprise américaine fondée en 1968 par Gordon Moore, Robert Noyce et Andrew Grove. Elle est le second fabricant mondial de semi-conducteurs après Samsung si on se fonde sur

Microprocesseur

vignette|Un Intel 4004 dans son boîtier à seize broches, premier microprocesseur commercialisé.
vignette|Architecture de l'Intel 4004.
vignette|L'intérieur d'un Intel 80486DX2.
Un microprocesseur est

X86

La famille x86 regroupe les microprocesseurs compatibles avec le jeu d'instructions de l'Intel 8086. Cette série est nommée IA-32 (pour Intel architecture 32 bits) par Intel pour ses processeurs à pa

Cours associés (107)

CS-307: Introduction to multiprocessor architecture

Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce the essential technologies required to combine multiple processing elements into a single computer.

ENV-424: Water resources engineering

Water resources engineering designs systems to control the quantity, quality, timing, and distribution of water to support human demands and the needs of the environment.

CS-487: Industrial automation

This course consists of two parts:

- architecture of automation systems, hands-on lab
- handling of faults and failures in real-time systems, including fault-tolerant computing

Unités associées (29)

In the development of energy and chemical processes, the process engineers extensively apply computer aided methods to design & optimise these processes and corresponding process units. Such applications are multi-scale modelling and multi-objective optimisation methods. Multi-objective optimisation of super-structured process designs are expensive in CPU-time due to the high number of potential configurations and operation conditions to be calculated. Thus single process units are generally represented by simple models like equilibrium based (chemical or phase equilibrium) or specific short cut models. In the development of new processes, kinetic effects or mass transport limitations in certain process units may play an important role, especially in multiphase chemical reactors. Therefore, it is desirable to represent such process units by experimentally derived rate based models (i.e. reaction rates and mass transport rates) in the process flowsheet simulators used for the extensive multi-objective optimisation. This increases the trust engineers have in the results and allows enriching the process simulations with newest experimental findings. As most rate based models are iteratively solved, a direct incorporation would cause higher CPU-time that penalises the use of multi-objective optimisation. A global surrogate model (SUMO) of a rate based model was successfully generated to allow its incorporation into a process design & optimisation tool which makes use of an evolutionary multi-objective optimisation. The methodology was applied to a fluidised bed methanation reactor in the process chain from wood to Synthetic Natural Gas (SNG). Two types of surrogate model, an ordinary Kriging interpolation and an artificial neural network, were generated and compared to its underlying rate based model and the chemical equilibrium model. The analysis showed that kinetic limitations have significant influence on the result already for standard bulk gas chemical components. A case study applying the previous version of the process design model and the revised version (with rate based model introduced as a set of five surrogate models) will demonstrate that the prediction uncertainties of the process design & optimisation methodology are reduced due to the integration of the rate based model of the fluidised bed methanation reactor. It will be shown that the different process design models predict considerably different optimal operating conditions of the Wood-to-SNG process. This emphasises the importance of the integration of rate based models into the process design models. The presented approach has been developed for the fluidised bed methanation reactor, however, it is a generic approach which can be applied to other process unit technologies as well. Future investigations will target other technologies to further improve the process design & optimisation predictions and support project development.

The increased accessibility of data that are geographically referenced and correlated increases the demand for techniques of spatial data analysis. The subset of such data comprised of discrete counts exhibit particular difficulties and the challenges further increase when a large proportion (typically 50% or more) of the counts are zero-valued. Such scenarios arise in many applications in numerous fields of research and it is often desirable to infer on subtleties of the process, despite the lack of substantive information obscuring the underlying stochastic mechanism generating the data. An ecological example provides the impetus for the research in this thesis: when observations for a species are recorded over a spatial region, and many of the counts are zero-valued, are the abundant zeros due to bad luck, or are aspects of the region making it unsuitable for the survival of the species? In the framework of generalized linear models, we first develop a zero-inflated Poisson generalized linear regression model, which explains the variability of the responses given a set of measured covariates, and additionally allows for the distinction of two kinds of zeros: sampling ("bad luck" zeros), and structural (zeros that provide insight into the data-generating process). We then adapt this model to the spatial setting by incorporating dependence within the model via a general, leniently-defined quasi-likelihood strategy, which provides consistent, efficient and asymptotically normal estimators, even under erroneous assumptions of the covariance structure. In addition to this advantage of robustness to dependence misspecification, our quasi-likelihood model overcomes the need for the complete specification of a probability model, thus rendering it very general and relevant to many settings. To complement the developed regression model, we further propose methods for the simulation of zero-inflated spatial stochastic processes. This is done by deconstructing the entire process into a mixed, marked spatial point process: we augment existing algorithms for the simulation of spatial marked point processes to comprise a stochastic mechanism to generate zero-abundant marks (counts) at each location. We propose several such mechanisms, and consider interaction and dependence processes for random locations as well as over a lattice.

Séances de cours associées (265)