Efficient Solution of Ordinary Differential Equations with High-Dimensional Parametrized Uncertainty
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical ...
The basis of the discrete element method is to model masses interacting with each other through different forces and constraints. On each mass, the second law of Newton is applied to obtain a differential equation. From this equation and boundary condition ...
We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial dif ...
The homotopy continuation method has been widely used to compute multiple solutions of nonlinear differential equations, but the computational cost grows exponentially based on the traditional finite difference and finite element discretizations. In this w ...
The aim of this work is to propose and analyse a new high-order discontinuous Galerkin finite element method for the time integration of a Cauchy problem for second-order ordinary differential equations. These equations typically arise after space semidisc ...
We propose a data-driven Model Order Reduction (MOR) technique, based on Artificial Neural Networks (ANNs), applicable to dynamical systems arising from Ordinary Differential Equations (ODEs) or time-dependent Partial Differential Equations (PDEs). Unlike ...
Complex physical systems are unavoidably subjected to external environments not accounted for in the set of differential equations that models them. The resulting perturbations are standardly represented by noise terms. If these terms are large enough, the ...
We study the system of linear partial differential equations given by dw + a Lambda w = f, on open subsets of R-n, together with the algebraic equation da Lambda u = beta, where a is a given 1-form, f is a given (k + 1)-form, beta is a given k + 2-form, w ...
In this work, we construct simple models in terms of differential equations for the dynamics of pest populations and their management using biological pest control. For the first model used, the effect of the biological control is modelled by a function of ...
The concept of causality is naturally related to processes developing over time. Central ideas of causal inference like time-dependent confounding (feedback) and mediation should be viewed as dynamic concepts. We shall study these concepts in the context o ...