Publication

On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications

Résumé

We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial differential equation without integral term. This differential form is valid for statedependent Poisson rates and we use it to characterize, via a mean-field approach, the collective dynamics of a large population of pure jump processes interacting via their Poisson rates. We explicitly show that for an appropriate class of interactions, the speed of a tight collective traveling wave behavior can be triggered by the jump size parameter m. As a second application we consider an exceptional class of stochastic differential equations with nonlinear drift, Poisson shot noise and an additional White Gaussian Noise term, for which explicit solutions to the associated Master equation are derived.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.